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Solution of Nonlinear Water-Wave and Wave-Body Interaction
Problems using a new Boundary-Fitted Coordinates Method

By Ronald W. Yeung and P. Ananthakrishnan,

Department of Naval Architecture and Offshore Engineering,
University of California, Berkeley, CA 94720, U.S.A.

In this paper, nonlinear time-dependent water-wave and wave-body interaction
problems are studied using a finite difference formulation based on a new method of
coordinates generation. Although the use of boundary integral methods is more
economical and less time-consuming, for two-dimensional potential flow simulations, the
finite difference method can provide a natural framework for solving unsteady viscous
flow problems that are of importance in a number of naval and offshore engineering
applications. In field discretization procedures such as the finite difference method, the
accuracy of the solution depends on the implementation of the boundary conditions as well
as on the properties of the mesh system. Generation of grids by the method of boundary-
fitted curvilinear coordinates, with the extreme coordinates conforming to the boundaries,
is an efficient means of discretizing a physical domain and implementing the boundary
conditions. According to this method, the physical domain is mapped onto a computational
domain which is usually uniform and rectangular. The governing equations and
boundary conditions are also transformed and then solved in the computational space. An
overview of some of the applications may be found in Yeung [1] and Thompson et al. [2].
Among the various grid-generation methods, the one introduced by Thompson et al. [3]
which uses a set of Poisson equations to describe the transformations, has been quite
popular in free-surface hydrodynamics (see e.g. Coleman and Haussling (4], Telste (5],
Yeung and Wu [6]). However, this method is also known to cause problems such as grid-
skewness and foldings when the free surface becomes steep or multivalued. In an attempt
to overcome these problems, Ghia et al. [7] and Coleman and Haussling [4] suggested
certain special treatments within the framework of the Thompson's method. They were
able to model steep waves with limited success, but were unsuccessful in modelling
overturning waves. Others like Miyata [8] resorted to the use of Lagrangian segments
together with "irregular-stars" to track the free surface. Simulation of overturning waves
was possible but there were inherent difficulties in applying such a scheme to flows where
strong gradients exist in certain local regions.

In the present work, the grids that discretize the physical domain are generated using a
variational formulation (see for e.g. Brackbill and Saltzman [9]) along with the notion of
an intermediate reference space. The field equations for the grid-generation problem are
derived as a product transformation of the physical space onto the computational space via
a reference space. Results presented here show that our method can indeed cope with steep
and overturning waves. Fig. 1 illustrates the transformations involved in this grid-
generation procedure. In order to demonstrate its capability to treat highly nonlinear
waves and wave-body interactions, two case studies are presented. In the first case, the
overturning and breaking of a large-amplitude shallow-water wave are examined. The
second case corresponds to the nonlinear flow about a slightly submerged cylinder. Both
cases are tackled using a mixed Eulerian-Lagrangian formulation [10] with a finite-
difference technique similar to [6]. Work-energy balance is used to monitor the accuracy
and stability of the finite difference scheme.

For the first problem reported here, the solutions based on linear theory are used as
initial conditions to start the calculations in shallow water. Periodicity conditions are
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imposed at the open boundaries. No saw-tooth type instability is experienced, which may be
due to the numerical dissipation of the method. For a given time step, regridding based on
equal arc-lengths is carried out once in about 50 time steps in order to satisfy the Courant
condition. A spilling breaker is observed for a large-amplitude wave moving over a wavy
bottom. Sample plots of the mesh and velocity vectors at a particular instant of time are
given in Figures 2-a and 2-b. A time sequence plot of wave profiles is shown in Fig. 2-c. It
shows that a cusp-like structure develops at the crest which overturns in time and
eventually results in spilling. In the case of a larger amplitude wave propagating over a
flat bottom, a plunging-type breaker is noticed. Typical grids and velocity vectors for this
case are shown in Figures 3-a and 3-b. A parallel projection in time of the free-surface
evolution is given in Fig. 3-c. Experimental observations [12] have confirmed that the free
surface can remain smooth and rounded even after the overturning, which is a feature
predicted by the calculations. The results of spilling and plunging breakers are also in
agreement with those of Baker et al. [11], who modelled these problems using a boundary-
integral method.

Next, the nonlinear free surface flow associated with the forced heaving of a slightly
submerged two-dimensional cylinder is studied. The approximate open boundary
condition of Grosenbaugh and Yeung {13], viz. Dp/Dt = 0 on a material open boundary, has
been found to be effective before waves reaches the boundary during the first few
oscillations of the cylinder. Several runs were made corresponding to a range of
amplitude and frequency of the oscillation as well as mean-depth of submergence that are
of practical interest. Close-up plots of the grids, velocity vectors and free-surface evolution
in time corresponding to a high- and a low-frequency case are given in Figures (4-a, 4-b, 4-
¢) and (5-a, 5-b, 5-¢) respectively. Splashing of waves near the centerline is observed in the
case of low frequency and high amplitude oscillation. Results are also compared with
experimental data and also with the results of Vinje et al. {14] who studied a similar
problem using a boundary integral method.

The case studies presented in this paper thus show that the present method is capable of
handling overturning waves and wave-body interaction problems that require grid
clusterings to capture local flow details. These results represent the first successful finite-
difference solution that can accurately and effectively handle bodies of a general shape in
a wave field. Since the procedure is based on the solution of the field equation, the effects of
viscosity can also be included more readily. Works in this direction are being pursued.
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Fig.1 Grids Generated by a Variational Method
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Fig.4-a: Typical Grid
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Fig. 4-b Velocity Vector Plot

Fig. 4-C Free Surface Evolution

Flow about submerged Cylinder for the
case of db=0.25; a/b=0.05 and N=w'w'b/g
=0.813
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Fig. 5-b Velocity Vector Plot

Fig. 5-C Free Surface Evolution

Fiow about submerged Cylinder for the
case of d/b=0.25; a/b=0.10 and N=w‘w"b/g
=0.169




DISCUSSION

Grilli: 1) Are there motivations in your choice of a finite-differ-
ence scheme other than the possibility to later introduce viscosity
in your computations? Do you think you can address non-viscous
problems that cannot. be addressed by the methods based on BIE?

2) How do you technically impose the boundary conditions in your FD
scheme?

Yeung & Ananthakrishnan: In principle all free-surface potential-
flow problems that could be solved by finite-difference methods can
also be tackled by boundary integral methods. The method presented
here is based on field-discretization procedure and hence the prob-
lems arising from evaluation of the time-dependent Green function
in certain boundary integral methods can be avoided and problems
that require solution of Euler's equations can also be handled.

For implementation of boundary conditions and solution of
field equation, please refer to Yeung and Wu (ref. [6] in the
abstract) .

Cointe: Your results are very encouraging in order to account for
viscous effects in the nonlinear simulation of free surface flows.
However, your time-stepping procedure is based on Longuet-Higgins'
& Cokelet's method. I wonder if there is a straightforward exten-
sion of this method to deal with the Navier-Stokes equations for
which you cannot use the Bernoulli equation and have to account for
zero shear stress at the free surface.

Yeung & Ananthakrishnan: Using the Lagrangian kinematic conditions,
the free surface can be advanced in time. However when solving the
viscous free-surface flow problems, both the continuity of shear
and normal stresses have to be satisfied on the free-surface. These
conditions need to be implemented in a different form in the case
of viscous flow but do not cause any apparent dlfflcultles Works
in this direction are underway.

Pawlowski: Could you please tell us if your discretization scheme
can deal with cases when the tip of the breaking wave touches the
free surface?

Yeung & Ananthakrishnan: By mapping the physical domain onto a
rectangular computational domain, it was not possible to advance
the free surface any further than what is shown in the figure
corresponding to a plunging breaker. However, we believe that by
mapping the physical domain to a different type of computational
domain at later times, it might be possible to advance the free
surface further. When the tip of the breaking wave touches the free
surface, the mapping would no longer be proper (i.e. one-to-one)
and different formulation of the problem and mapping procedure are
necessary.
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