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1. INTRODUCTION

An ocean-going ship normally follows a straight line course. Cases,
however, do arise when a ship has to follow a curved path, as for example
during manoeuvring or navigation in restricted waters. This leads to some
difficulties in obtaining the mathematical solution of the flow around a
ship, even for the well known linearized potential theory. In particular,
the problem associated with a ship moving in a curved 1line is
time-dependent. The solution at each stage depends on the entire history
before that. One special case is that of a ship moving in a circular path
at constant angular velocity. This leads to a drastic simplification of
the mathematical solution, in that the problem becomes steady after a
sufficient length of time. Apart from mathematical simplification, this
case is a wuseful basis for estimating steady turning radius of the ship
and gives some insights into the general solution of a ship moving in a
curved path. Havelock (1950) analysed this problem by considering a
submerged sphere. He used a dipole without free surface effects to
represent the sphere, in an initial value formulation in the time domain,
and then took the time limit to infinity. He derived an equation for
calculating the wave resistance and radial force. The problem was also
considered by Sretenskii (1957) in a slightly different manner. While
their investigations were limited to a certain degree of approximation,
the present work tries to obtain the exact solution of the linearized
potential’ problem of a submerged sphere moving in a circular path. A
distribution of sources over the body surface is expanded into a series
of Legendre functions. The governing equations are satisfied by use of
the appropriate Green function and by choosing the coefficients in the
series of Legendre functions.

2. THE GOVERNING EQUATIONS

To describe the problem, various coordinate systems are shown in figure
1. 0g-XoY¥o2, 1s fixed in the space.with the origin on the undisturbed free
surface and z pointing upwards; O-xyz rotates about point 0, at the same
angular velocity 1 as the sphere. The polar coordinate system (B,A,zo) is
defined so that $=0 indicates the ray 0,0. It is apparent that the problem
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becomes steady in the polar coordinate system as the time tends to
infinity. Based on the linearized por~ential theory, we have the following
governing equations for the velocity potential

2
Vo = 0 (1)
in the whole fluid domain;
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on the free surface z=0, where g is the gravitational acceleration;

V¢ =0 Z=-w; (3)
%% - Q(x+d)ny -Qyn, (4)

on the body surface So, where d is the distance between O, and O, n is the
inward normal of the body, and n. and ny are its components in the x and y
directions respectively.

To obtain the solution of the above equations, we write the potential

using a source distribution o({,n,{) over the body surface

¢ = ISOG(X.y,z,s.n.s’)a(e,n,s') ds (5)

where G is the Green function satisfying equations (1), (2), (3) and the
appropriate radiation condition. It can be derived as (Havelock 1950)
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where pv indicates the principal integration, (Bo,ﬂo,go) is the position
of the source, Jn(x) is the Bessel function, and R and Rl are distances
from the field point (&,8,() to the source and its mirror image about the
free surface respectively.

We may then expand the Green function and o(é,n,¢) Iinto series of

Legendre functions in the spherical coordina;e system

X=r sind cos¢ (7a)
- (7b)
y=r sind sing (7¢)

z=r cosfd - h

where h is the distance between the centre of the sphere and the free

surface. Details of the solution procedure are similar to those given by
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Wu & Eatock Taylor (1988) in an analysis of the submerged sphere advancing
in a straight line in waves. After the potential has been found the
hydrodynamic pressure can be obtained from
P = ol 08 Jumy (8)
where p is the density of the fluid; whereas the forces Fi can be obtained
by integrating the pressure over the body surface. Figure 2 gives the
hydrodynamic forces on the sphere submerged at h=2a and moving 1in circles
with d=2a, 5a, 8a and = respectively, as a function of Froude number. The
forces are nondimensionalized as fi -Fi/pg(4/3)7ra3(a/h)3 in a similar
manner to Havelock. The results corresponding to d=w are obtained from Wu
& Eatock Taylor (1988). As d increases, we find that the result tends to
that of straight line motion, where the radial force becomes =zero. From
the figure 1t can be seen that the forces oscillate with Fn; but the
oscillation decreases as the radius of the circle increases. It seems
remarkable that for each radius of the path taken by the sphere, the mean
of the tangential forces lies close to the case of straight line motion.
3. Conclusions

The hydrodynamic problem of a submerged sphere moving in a circular path
is solved based on the linearized velocity potential theory. It is found
that the radius of the circle has a significant effect on the
hydrodynamical forces on the sphere. The present method can be .%urther
used to extend Havelock'’s approximation for the submerged spheroid (1950),
by replacing equation (7) by spheroidal coordinates (Wu and Eatock Taylor
1987,1989). Existing numerical methods could be wused with the Green
function in equation (6) to analyse the problem of an arbitrary surface
ship, 1if one could assume that the linearized potential theory remains
valid in such a case.
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