CAUSALITY AND THE RADIATION CONDITION. I1.
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The problem considered here is the same one treated in the First
workshop under the same title, that is, the motion of a floating body not
under way sub ject to an external force and moment. We use the same
notation as before: a right-handed coordinate system Oxyz with Oz upwards
and Oxy in the equilibrium plane of the water; the "small” excursions about
the equilibrium position of the body are denoted by a1, .. . ,xg, where the
usual conventions about indices are observed. The linearized equations of
motion can then be shown to have the following form (see the first report
for references and further information about symbols):

t
(1) (mik + pikdBik(t) + Cikok + [ Lik(t-0) Slo) de = Xi(t), i, ke A,

where A is some subset of the integers I, ... ,6 indicating the allowable
modes of motion (possibly all six, of course). Here the pjk are the added
masses in Cummins’ sense, the cik are the hydrostatic restoring forces and
moments, and Lik is a weighting function determined by solving an initial-
value problem in potential theory. Lik(t) has the important property that it
isOfor t<0. We suppose, as before, that Xj(t) is absolutely integrable so
that Fourfer transforms can be used in solving the equations of motion.

The solution leads to the paradoxical situation that future values of
Xi are involved in determining the present value of «j(t) unless it can be
established that the determinant of

(2) S =-02 I Lik(t) elot at + cik - o2mik+pik(=)}
0
= -02[mik + pik(e)] + loAik(e) + Cik, i,keA,

has no zeros in the e upper half-plane. In order to attack this problem the
hermitian form Q associated with 33T is introduced, for if this form is
positive definite, then all the main-diagonal determinants of SST are
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positive and hence det S = 0. The proof of positive definiteness given at the
First Workshop is valid only for real ¢ and not for all ¢ in the upper half-
plane, as was pointed out to the author by Gyeong Joong Lee of Seoul

National University. Consequently it is no proof at all. We attempt to
correct this here.

By its definitionQ = aigq §kjag 2 0. The assumption that Q=0 for some
o=s+ir, r>0, and some «j, ieA, implies that the following equation must hold:

(3) o, 2 A (SR (r+52)2 o
| &iCikok " oiAik(S MRk [r2+(5+5)2][r2+(5-5)2) ds'=0

0

(r>0 has played a role in deriving this equation). One may show that

(4 ®iCik@k = pgWlle3+oqyc-asxc @3 +Rqyc-TEsXc) +
+ (XeyeJ12/ Wlog&s +xams)] + pgV(Hims®s + Homa®al,

where (xg, y¢) is the centroid of the waterplane area W, J12=[w xy dS, Hy and
H2 are the metacentric heights about the axes Ox and Oy, respectively, and V
is the displaced volume. For a hydrostatically stable floating body the
second line in (4) must be >0 if «wq or g is = 0. Hence «iCik& 2 0. We may
then conclude that (3) cannot be satisfied for any o in the upper half-plane
if ik >0 or even if only «Aik(S' )& 2 O but > O for some interval of s'.

Although fluid dynamics has provided the definitions of pik(«) and
Lik(t) and their symmetry in i and k, the remainder of the reasoning has
involved only the form of the equation (1) and properties of Cik,

We have not yet been able to prove that the positive definiteness of Q
implies that ajAik® is positive definite. Also, in the discussion at the First
Workshop it was stated that if the body is under way causality is implied by
the positive definiteness of xilo(Aik*Aki)*io2(uik-pki)lXk. This is contra-
dicted by the known existence of bodies and positive Froude numbers for
which, say, A33<0. The problem is still open.
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workshop on Water waves and Floating Bodles

Discusser: Enok Palm

At the end of your talk you wanted to solve the problem as an initial-
value problem and then obtain that y ou do not need any radiation conditions.

| believe that should be possible, but | also believe that you must use
some boundary conditions at infinity for all time, expressing that energy
there Is not infinite. That could perhaps be obtained by requiring that the
solution can be obtained as a Fourter integral.

Author's reply: J. V. Wehausen

what | would like to prove is that @>0 everywhere in the o upper haif-
plane implies that eiAik(S)ak 2 O for all s and is > O for some interval. It
isn't clear to me that this is the same as an initial-value problem, but it

certainly seems analogous to avoiding invoking a radiation condition by
solving such a problem.

Discusser: E. O. Tuck

IT iCik® < 0, then the last contradiction does not apply, which is
consistent with the Ursell comment about exponentially increasing
solutions, since that would lead to instability.
Author's reply: J. V. Wehausen

If eiCikdie < O, then | suppose that (3) can be satisfied for some choice

of 0 and s. However, although Q=0 implies (3), | am not able to prove the
converse.
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F. Ursell. Discussion of Wehausen's paper.

It is interesting to approach the problem from a slightly different point
of view. For the sake of definiteness let us consider the transient
motion of a half-immersed circle r = a, - § r < § < ir subject

to an applied force, see Ursell 1964. This motion is symmetric about

6 = 0.

Transient problems are usually solved by the method of Laplace
transforms, let ¢(x,y,t) denote the velocity potential, suppose that
lp(x,y,t)1 < MeCt, and write d(x,y,w) = Im @(x,y,t)ei‘-"t dt wheré
Im w> ¢, then 1¥(x,y,0w)I <M/(Im w-c). °

(d is the conventional Laplace transform Iw p(x,y,t)e Pt dt,

[o]
with p = -iw.) Then we have

92 32
[ =)+ 552 ] ®(x,y,w) = 0 in the fluid,

and w2d + g gg = 0 on the mean free surface y = 0, (with two other
boundary conditions on the body). These are the usual equations for

a periodic motion with angular frequency , except that here w is
complex and there is no radiation condition. Should a radiation condition
be imposed? (This question seems to be related to Wehausen's discussion
of causality.) Let us find the form of the expansion at large distances,
we shall see that no radiation condition is needed. We define the wave

source potential

. ,
-k
S(x,y,0) = [ 008 KX g,
w
o kg -2
g

there is no singularity on the real k-axis since w 1is complex.
Following the line of argument of Ursell 1950 or Ursell 1968 we find
that

d(x,y,w) = A(w) S(x,y,w)

+ F1(x,y,0) + Fa(x,y,w)
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o0

where F1(x,y,0) =5 op(w) cos mg.rM, r > a,
1' .
<«

and Fa(x,y,w) = Y PBp(w) cos mf.rM, r > a.
o

In fact, since Fo(x,y,w) 1is a series of positive powers, it must be
convergent for 0 ¢ r < «,

For real w it is known that Fjy(x,y,w) 1is a standing wave
determined by the radiation condition, but we shall see that Fy(x,y,w) =0
for complex w. We have just noted that Fo(x,y,w) is defined for all

(x,y), even inside the body, and that

2 3 2 3
[g_ + 6;] Fz(x,y,w) = [%‘ + a;] d(x,y,w)
y

2 3
w
- [E- + 3§] Fi(x,y,0),
where the functions on the right are defined when x2 + y2 > a2,
both when 'y > 0 and when y < 0 since they satsify the free-surface
condition when y = 0. Also these functions are bounded when x2 + y2 5
and vanish when y = 0. It follows that [95 + 9 ] Fy(x,y,w) =0,
g Oy

2 2
and since also [%—2 +'g—2] Fo(x,y,0w) = 0, we conclude that
X y

2 2
Fo(x,y,w) = C(w) exp[— g y] cos g X,

as for real ; but for complex w this is not consistent with the
condition

M

1d(x,y,w)1 < Tn o - o

unless C(w) = 0, since the other terms in the expansion of &(x,y,w) tend
to 0 when x — ® while cos g x — o for complex w, thus

Fp(x,y,w) = 0. We also note when w - a real positive value w,, the
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e-k¥cos kx

5 dk,

@
source potential S(x,y,w) — J

o Kk - Y
g

with an indentation below w,. (This is the usual radiation condition.)

We can now apply the inversion formula

ictow
(X,y,t) = L d(x,y,w) e-lut gy,
7] )yr 27', !y)
ic-w

If &(x,y,w) 1is sufficiently small when Im w - «» (and it usually is)

we find that ¢(x,y,t) = 0 when t < 0, and that p(x,y,t) 1involves the
applied force up to time t only; see Ursell 1964, where the displacement

at time t is given for the semicircle. So there is no difficulty with

causality when we use the Laplace transforms.
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Wehausen: Although Ursell's discussion of the initial-value problem
by use of the Laplace transform is of much interest of itself, I
don't believe that it clarifies very much the problem that I am
trying to treat. In the first place, I am not really treating an
initial-value problem although I think .that I may have given that

impression. The forcing function Y;(t) is given for =eo<t<+eo it

is also required to be absolutely integrable, but this is so that I
can use ordinary Fourier transforms (instead of, say, Wiener's
generalized harmonic analysis). What seems like a straightforward
use of Fourier transforms to solve the equations of motion has led

to the paradoxical situation that aj(t) is determined in terms of

X (t+T) for 1>0 as well at 1<0 unless a certain weighting func-
tion Tjx(t) can be shown to vanish for t<0. If I have not made
(another) egregious error, this will be true for a hydrostatically
stable floating body if oA, (S)oy20 for all s and >0 for at

least some interval of s. This 1is not, of course, the usual
statement of the radiation condition, but related to it. Also,
"causality" gives to the title a philosophical aspect that is
belied by the content of the paper. Succinctness is my only defense
for this.
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