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Ships and offshore structures operating in waves and constrained by weak restoring forces may
undergo large amplitude low-frequency oscillations excited predominantly by nonlinear wave forces.
This slow motion is damped by viscous as well as ideal fluid effects both contributing a significant
component to the damping force.

This abstract outlines a new theory for the evaluation of the ideal component of the damping
force, often called “slow-drift wave damping”. It is valid for three-dimensional structures of general
geometry floating in waves of arbitrary heading and frequency. Explicit *slow-drift® Green functions
are derived which allow the solution of the problem without the discretization of the free surface.
The theoretical framework is similar to that developed in Sclavounos (1988) for second-order wave-
body interactions.

The Boundary Value Problem
Consider a coordinate system (z, y, z) fixed on a body which translates with a small speed U in the
positive z—direction while it interacts with monochromatic plane progressive waves of amplitude

A, frequency wo, wavenumber v and direction 8 off the positive z—axis. With respect to the
translating frame, the flow oscillates at the frequency of encounter

w=wy —~Uvcosp. (1)

Omitting throughout the complex time factor ¢*“*, the deep-water incident-wave potential far from .
the body is given by oA
19 - -
= ____ev(: iscos P dylln‘). )
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where g is the acceleration of gravity. At small speeds U, the steady-state flow past the body
is to leading-order described by the double-body velocity potential U(-z + @), and the radia-
tion/diffraction potential o is subject to the linearized free-surface condition

©. - (WP /9)e + 2i(wU/g)(Ve . V- p,) — i(wU /g9)pdss =0, (3)

enforced on the z = 0 plane and containing errors of O(U?). Equation (3) also governs the modified
incident wave potential @; which unlike (2) is convected by the double-body flow. On the mean
position of the body wetted surface Sp, the diffraction and radiation potentials are subject to

©Dn = —PIn, Pjn =twn; +Um;, 5=1,...,6 (4)
where n; are the unit normal vectors corresponding to the six rigid body oscillatory modes and

m, depend on gradients of the double-body potential ~Uz + §. The details of the derivation of
equations (3) and (4) are given in Newman (1978).
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The slow-drift wave damping is related to the U~slope of the drift force experienced by the body,
in the limit as U — 0. The conditions for this interpretation to be valid are discussed by Faltinsen
(1987). It is therefore sufficient to determine the leading-order forward-speed correction to the
velocity potential p. Assume a perturbation expansion of the form

=00+ ropr+-: (8)

where the selection of the small parameter 7y = wyU/g follows from the form of the free surface
condition (3) and gy represents the sero-speed incident, radiation or diffraction potentials. Upon
substitution of (1) and (5) in (4) the potential ¢ = p, can be shown to satisfy the non-homogeneous
free-surface condition

¥s = (w3/9)¥ = 2o — 2vcos B pg — 26V Vipo +id,. 00 ()
and the body boundary conditions
Yon =—VIn,  Pjn = —twpcosBn, + (g/wo)m; (7)

for the diffraction and radiation problems respectively. The potential ¢; represents the correction
to the far-field incident wave (2) arising from its convection by the double-body flow. It will be
determined from the solution of the Laplace equation subject to (6) on the z = 0 plane with ¢, set
equal to ;.

The perturbation expansion (5) is not uniformly valid in the entire fluid domain because the
velocity potential ¢ = ¢, grows in magnitude at large horizontal distances from the body. At a
fixed position near the body, on the other hand, the second term in (5) may always be rendered
small relative to the first for a sufficiently small r,. Formally, this nonuniformity can be treated by
the asymptotic matching of the “inner” solution (5) to an “outer” solution subject to (3). It can
be shown that this matching will not change the character of the inner solution by the addition of
a homogeneous component. This is here illustrated for a wave disturbance generated by a point
submerged time-harmonic source potential subject to the free-surface condition

G, - («}/9)G - 2inUG, =0 (8)
which accepts the uniformly valid solution
1 1 1¢[* j" r(s+e)-ik|(s~¢) cos 0+ (y~n)sin e}
22242 9
G4 r r'+t./; kdk ° “k(l-Zracod)-(wo—a'c)z/g (©)

where r, 7' are the radial distances from the source located at € and its image above the free surface
to the field point Z, and ¢ is the Rayleigh viscosity. The formal expansion of (9) for small r, gives

ch(u-c)-o'h[(o- ¢) cos 0+ (y—n)sin 0]

92 = 3w
G=Go+1Gy+--, G;‘—";/o Pdk A dfcost [k—(wo—l't‘)’/ﬂl’ ’ (10)

where G, is the sero-speed wave source potential. The Green function G, has been derived and
studied by Huijsmnans and Hermans (1985), it is easy to verify that it satisfies the free-surface
condition

G1, - (43/9)G1 = 2iGo, (11)
and that it represents a wave disturbance growing in the far field. This growth is associated with
the residue from the double pole in (10). The absence of a homogeneous component in the “inner”
potential ¢ is also supported by the asymptotic analysis in Ogilvie and Tuck (1969) on the related
forward-speed problem for slender ships.
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The “Slow-Drift® Green Functions

Three new Green functions will be derived for the solution of the boundary-value problem for y.
Let G(Z;€) = 1/r + 1/¢. The first slow-drift Green function D; satisfies the Laplace equation in
the entire fluid domain and the free-surface condition

Dy, — (w3 /9)Ds = [i@,, - 2v(cos B, + sin A G, )|e~**(2cos A+vslnp) (12)

on z = 0. Using the techniques of Fourier transforms, we obtain

- A _ Le—w(scosptysinp) poo 3w lathe—ik[(a=()cos 0+ (y=n)sin 0]
Di(Z€) =i x /o m«/; @ L (wo - i€)3 /g [+ 2 cos(0 - ‘?]')
13

where £ = k? + 2kv cos(8 — f) + v3. The second slow-drift Green function D, is subject to the
free-surface condition

Dy, — (w3/9)Da = 2iGo,(2; &) — 2vcos B Go(: §) (14)
where G is defined in (10). The solution for D, is

DA(£8) = 2 /o " kdk /o ”da

eh(n+;)--ik[(s-- €)cos0+(y—n)sine)
[k(wo — i¢)?/g]?

- (kcosd — v cos ). (15)

The last slow-drift Green function Dy satisfies the free-surface condition
Dp, - (w3/9)Ds =iC,,(% &) Go(% &) - 21V.G(F €) - VaGo(£ §) (18)

"and is given by the expression

- _) 1 oo In eb:-ih[(l-h)eocti-(l-m)"l'l E
Do@d =gz [ hak [ 4 — QM) ar)
L Ir  antln+i(@-C)cosd+(ni-n)eind] j2 _ g5
,0) =1 e T ’
Qe =i [ [ a0 [y A m 18)

where u3 = k3 — 2klcos(f — 9) + . The derivation of (13), (15) and (17)-(18) is similar to that
presented in Sclavounos (1988) for an analogous set of Green functions arising in second-order wave
body interactions.

e Solution for the Potenti

Let the double-body and zero-speed radiation/diffraction potentials §,  be defined as a distribution
of sources on the body boundary,

() = / /s a(¢)C(z; €) d¢ (19)

@ = [ RUCLACEES (20)
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Setting o equal to p; in the free surface condition (6) and combining (12) with (19), we obtain
the solution for the potential ¥, in the form

¥i(0)= Gisa/on) [ o(6) D12 ) de (21)

which can be shown to satisfy (6).

A particular solution ¥p for the radiation/diffraction problem which satisfies (6), but not the body
boundary conditions (7), can be obtained in an analogous manner by combining the slow-drift
Green functions D4 g with (20). The result is

¥r () = //;. o(€)[Da(Z; €) + Ds (%; £)) d€. (22)

It follows from the definitions of the slow-drift Green functions [eq. (13), (15) and (17)] that the
potentials ¢;,¥p defined by (21) and (22) are regular in the fluid domain, including the interior
of the body but develop a singularity at the body waterline. Given the source strenghts #, o, they
can be evaluated together with their gradients by quadrature.

The solution of the radiation/diffraction problem is completed by enforcing the body boundary
condition with the addition of a potential ¥y which satisfies the homogeneous free-surface condition.
Define the diffraction and radiation potentials respectively as follows

Yo = ¥p + ¥u, ¥; =v¥p; + Yu;. (23)
By virtue of (7) the Aomogeneous components Y5 are subject to the body boundary conditions
Yun = ~Y1n —~¥Pn  ¥ujn = —iwp cosfn; + (g/wo)m; — Yipa. (24)
and can be evaluated by standard zero-speed boundary integral methods.

Finally, the slow-drift wave damping is obtained from the substitution of (5) in the Bernoulli
equation and the evaluation of the component of the steady-state drift force that depends linearly
on the forward velocity U.
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