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A device for extracting energy from ocean waves (the Oscillating
Water Column, OWC) is based on the exchange of energy from the water into
the air that is trapped above the water free-surface by an air chamber open
at the bottom. The air chamber, which we assumed to be formed by a fixed,
partly submerged structure, is connected with the atmosphere by a duct
containing an air turbine. As a result of an incident, in general irregular,
wave field, the internal free-surface as well as the air pressure are made to
oscillate, and a flux of air is driven back and forth through the turbine. This
paper deals with the OWC device control in irregular seas. The control
problem is to find out the instantaneous flow across the turbine that
maximizes energy absorption. In the following, linear water wave theory and
isentropic flow of air across the turbine are assumed.

Under the assumption of small compressibility effects, the mass
balance of air in the chamber is shown [1] to be given by

Q) = a3 + G - Vo (P 1 2. (1)

Here V, is the volume of air in the chamber for undisturbed conditions, y=
cp/cy is the ratio of specific heats of air, qu(t) is the air flow rate across the

turbine and p(t) is the air pressure in the chamber relative to the
atmospheric pressure, Pj.

For a given device geometry, the diffaction flow rate, qq(t),

depends only on the incident wave field, and so it can be taken as a forcing
term.
The radiation flow rate, q,(t), is dealt with by means of a

convolution integral involving the time-dependent air-pressure aqd the OWC
impulse response function, h.(t). Taking into account causality (i.e. the fact

that no air flow occurs prior to the forcing pressure action), the convolution
integral which expresses the radiation flow turns out to be given by

t
e = [ he(t-9 p(o) dr. (2)
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The amount of energy absorbed by the OWC device during a time
interval T is expressed as '

T
EM= [p(t) q(» dt. (3)
0

In order to specify the control strategy that maximizes (3),we apply Parcifal
theorem to equation (3) and get

B =3= [P*(0) Qo) da (4)

where P(iw) and Qi(iw) are the Fourier transforms (FT) of the air pressure and

flow rate across the turbine, and * represents complex conjugate. By
applying the Fourier transform to equation (1), it turns out that

\'/
Q(i®) = Qq(iw) + [ Hy(ic) - im;;"’a] P(io) , | (5)

where H (iw) = -[B(w) + io C(w)] = FT[h(1)]. Substituting (5) into (4), we get
after some algebra

1 (logw? . Qqinyy,
B(T) =3 f‘m@) - Bl Piw) - 5 1?2 da. ©

This expression shows that maximum energy absorption is attained when

Qq(iw)
2B(w)

P(iw) = @]

This result has been obtained previously by [2] for monochromatic waves.
Substituting (7) into (6) it cames out that

1 (iQuiw?
= 8
E(Mmax 2% 4B(w) ®

Introducing (7) into (5), and applying the inverse Fourier
transform (IFT) one gets the following expression for the optimum flow rate
across the turbine

Q%) = -:[hl(t-r)dt - vﬁ T ®

where hl(t) = IFT[B(w) - ioC(w)] = -IFT[H (iw)] = -h (-t). Noting that h.(1<0) = 0
it turns out that
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The first term in the right hand side of (10) is intrinsically anti-causal; this
means that in order to achieve maximum cnergy absorption it is requnrcd
that the air pressure be known in advance, theoretically infinitely far in the
future. Obviuosly this information is unavailable because of the randomness
of the diffraction flow rate, and because future values of the pressure are
affected by previous control decisions. For practical reasons, then, turbine
flow control must be based only on present and/or past air pressure values.
Of course, under these conditions, it will be impossible to obtain the
theoretical maximum energy absorption, as expressed by (8).

Note that for conventional Wells turbines, the flow rate and
pressure difference are related to each other approximately by qt(t) = D p(t),

where D is a real positive constant. Fourier transforming this cquation yields
Q (m)) D P(iw). Introducing this expression into (5), solving with respect to

P(I(D), and substituting the result into (6) gives the following reduction of the
energy absorption

1 1
D+B(w + iofc(w) + -Yg-i 2B
1Pa

1 2 2
ME=- _o_[B(m) I, o | P do.  ap

This equation provides a means for determining the optimum
values of turbine constant D and undisturbed volume Vo, for a particular
device (B and C fixed) and sea state (Qq fixed). Their optimum values are those

that minimizes AE(T).

A more powerfull means of reducing (11), and so of increasing
energy absorption, is achieved if the air pressure, taken now as the control
variable, is expressed as a causal function of the diffraction flow rate,

t
pO= [htaq@ do (12)

where hp(t<0)=0. The use of this relation introduces two problems, the

knowledge of both the diffraction flow rate qq and the function hp. The
diffraction flow rate may be estimated by equations (1) and (2), provided the
turbine flow rate and the air pressure are measured. The function hp must be

determined in order to minimize AE(T). Note that since hp,(t<0)=0, the real and
the imaginary parts of Hp(ico) = Fr[hp(t)] are pairs of Hilbert transforms (this
is a way of expressing Kramers-Kronig relations). Substituting P(iw) = Hp(ico)
Qq4(iw) in (6), it turns out that the decrease in energy absorption becames

_L Y S 13
ME=2= .OJ;B(m) Qg |HyGio) - e I? 4 (13)
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We now pro_cccd in order to find out a function Hp(im) which
minimizes (13), subject to the Hilbert transform condition referred to above.
Recalling a well known theorem from system theory [3] we may state that if
Hp(s) (where s is a complex number) is an analytic fuction for Re(s)>0 and if

lim Hp(s) =0 , (14)
|s] =00

then Hp(i(o) is the transfer function of a causal system. These are the two

conditions to be imposed on Hp(im) in order to garantee that hp(t<0) = 0. Let us
now assume

. N(iw
Hp(lw)—D(iw) , (15)

where N(iw) and D(iw) are polynomials of order n and m, respectively. Note
that m>n is required by (14). The analytic condition imposed on Hp(im) for

Re(s)20, requires D(iw) to have its roots on the 2nd and 3rd quadrants. This
condition will impose certain constraints on the coefficients of D(iw),
depending on the order of the polynomial. No further progress can be done
except if a particular form of B(w) is assumed (and so a particular OWC
geometry).

. For two dimensional OWC of shallow draft in deep water, it was
found that m=3 and n=2 were two good choices. In order to garantee the
conditions imposed on the roots of the D (iw), its coefficients must satisfy the
following conditions

>0 , =123 (16)

and
ay <aj ay . (17)

Results for this geometry are expected to be presented at the conference.

Note that this control strategy will require the use of a non-
conventional turbine, capable of controlling the flow circulation around the
blades (by changing the turbine geometry or by any other method).

The autors think that this kind of control technique may also be
applied to other types of situations: for instance, if it is required to control
the movement of a floating structure in irregular seas, subjected to some
objective function.
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DISCUSSION

Ealnes: Your approach is a very interesting alternative to predict-
ing the incoming wave. In a model experiment (ref. symp. Wave and
Tidal Energy, Cambridge, 1981) we obtained, with a JONSWAP wave
spectrum, 85% of the power we would have absorbed if we knew the
?uture wave in advance. In comparison, how much power do you absorb
in your numerical example as compared to the theoretical maximum?

Perdigdo & Sarmento: In our example over 95% of the theoretical
maximum efficiency is achieved. However, we think you cannot com-
pare this result with the 85% energy efficiency you claim to obtain
in your experiment. The reason is that you are not comparing with
the theoretical maximum, but with the maximum you would obtain if
your predictor was perfect. Note that your control strategy in the
experiment is not similar to the optimum countrol strategy as
stated by eq. (12) in my paper (which gives the theoretical maximum
for energy extraction).
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