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The radiation and diffraction problems for a floating body with a small forward speed
are most fundamental topics in marine hydrodynamics and their solutions are of practical
relevance in wave analysis of many offshore constructions. Examples are prediction of
wave drift forces and wave drift damping of the resonant induced low-frequency motions
of a tension-leg platform or a moored ship. In the present analysis we adopt Green'’s
theorem to formulate the radiation and diffraction problems. Solution of the problems
is obtained by a panel method, which is applicable to bodies of arbitrary shape. The
forward speed Green function is expanded in Taylor series to the first order in the forward
speed (Huijsmans and Hermans 1985) close to the body. In the far-field the exact Green
function is applied, since the local expansion diverges. Close to the body nonlinear
coupling between the oscillatory motion (the waves) and the steady flow is accounted
for. The present method only requires unknowns on the body surface.

The underlying assumptions are that the incoming waves as well as the body motions
superposed on the steady forward translation of the body have small amplitudes. Viscous
forces are neglected, the fluid is assumed incompressible and the motion irrotational so
that we can apply potential theory.

1 Formulation of the problem

We consider the fluid motion in the frame of reference Ozyz fixed to the steady translation
with speed U of the body. For given frequency of oscillation o of the body or the incoming
wave, the potential governing the fluid flow may be decomposed into an oscillatory part
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where ¢ denotes the potential in the diffraction or the radiation problems, or the sum of
them, and a stationary part
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due to the steady translation of the body. For small speed U, ¢, is approximated by the
double body flow, hence we consider flow regimes where the lee waves are absent.
The free surface condition for ¢ (see Zhao et al. 1988) reads for small U
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where V; denotes the horizontal gradient and g the acceleration of gravity. Appropriate
radiation conditions (outgoing waves at infinity), body boundary condition and condition
of vanishing velocity in the infinitely deep water close the boundary value problem for
the Laplacian potential ¢. We now apply Green’s theorem and obtain
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where Sg denotes the mean wetted surface of the body and Sy the mean free surface. G
is the forward speed oscillatory Green function and
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#o denotes the incoming wave potential, ~4w¢ applies when the field point 1s in the fluid
and —27¢ when (z,y,2) is on Sg.

2 Solution of the problem

For (x,y,2) on Sp we introduce the singular expansions

p=9¢°+18" +... (6)
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into (4) and obtain for zeroth and first order in 7 :
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for the diffraction problem. We obtain corresponding equations for the radiation problem.
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To solve the integral equations we adopt a panel method, with ¢° and #! being
constant on each panel. The left hand sides of (8) and (9) then involve identically the
same integrals over a panel on the body surface . Now, from Huijsmans and Hermans
(1985) G! may be given by
GO
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dvdzx (10)
where v = 0%/g. Thus, the right hand side of (3) is determined by zero speed quantities.

Having obtained the potential on the body, the potential elsewhere in the fluid, for

example the far-field flow, is obtained by the original equation (the singular expansions
diverge in the far-field).
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DISCUSSION

Miloh: It is well-known that linearized theory breaks down at
1=1/4. Nevertheless, since we know the type of singularity,
logarithmic and square root for 2-D and 3-D flows I believe that
in certain situation the drift force will be finite even at 1=1/4

provided the integration is done in a proper manner. Did you try in
your calculations to approach this critical frequency from below
without facing out numerical problems?

Nossen, Palm & Grue: Due to the neglection of U? in the free sur-
face condition and the perturbation expansion with respect to T

used, our theory is not good at 1T values greater than about 0.1.
Therefore the 1=1/4 problem is not relevant to our method.
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