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Calculations of the free-wave spectrum of a ship in steady motion are
required for wave~resistance predictions and remote sensing of ship wakes. In
particular, the latter practical application requires the ability of determining
the short divergent waves in the spectrum having wavelengths between 5 cm and 40
¢m associated with Bragg scattering of the electromagnetic waves in typical SAR
systems used in remote sensing of ship wakes. No meaningful predictions of such
short waves can be obtained on the basis of currently available numerical
methods. More generally, numerical predictions of the steady wave pattern at
large and moderate distances behind a ship are notoriously unreliable, as was
recently made clear at the Workshop on Kelvin Wake Computations (1988). Ship
wave~-resistance calculations are also known to be unreliable.

It is shown in the present study that a major cause of the notorious unreli-
ability of numerical predictions of ship waves mentioned above is mathematical
in nature. More precisely, the known mathematical expression for the wave-
spectrum function which form the basis of existing calculation methods is quite
111 suited for accurate numerical evaluation because the wave spectrum is
defined by the sum of integrals around the ship waterline and over the ship hull
surface that very nearly cancel out one another. The errors which inevitably
occur in the numerical evaluation of the waterline and hull integrals in the
expression for the wave spectrum cause imperfect numerical cancellations between
these components and corresponding large errors in their sum. Numerical errors
in the sum of the waterline and hull integrals are especially difficult to
control because the errors associated with the numerical evaluation of the
waterline and hull integrals are not necessarily comparable due to differences
in the errors corresponding to numerical integration over waterline segments and
hull panels.

The fundamental difficulty noted in the foregoing 1s resolved in this study
by means of a modified mathematical expression for the wave spectrum function.
The new expression for the wave spectrum is mathematically equivalent to the
usual known expression, from which it has been obtained by means of several
applications of Stokes' theorem for combining the waterline and hull integrals.
However, the previously-noted cancellations occurring between these waterline
and hull integrals are automatically and exactly accounted for via a mathematical
transformation in the new expression for the wave-spectrum function, which
involves modified waterline and hull integrals. This new expression is
considerably better suited for numerical evaluation, as 1s now shown.

The problem considered in this study is that of evaluating the steady wave
spectrum and the wave pattern of a ship in terms of the near-field flow at the
hull surface. The near-field flow thus is assumed known for the purpose of the
present study, which is specifically concerned with the prediction of the steady
wave spectrum and the wave pattern within the Neumann—Kelvin theoretical
framework. This theory expresses the wave potential ¢w(€E,n,5) at any point
(E,n,z) behind the ship stern in terms of a well-known Fourier representation
which may be expressed as follows:

6u(€4n,0) = (2/m)f exp(v’gp?) cosv’npe) Inm exp(1v2Ep) K(t) dt ,

where v = 1/F is the inverse of the Froude number F, p is defined in terms of
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the Fourier variable t by the relation p = (1+t2)1/2 and K(t) is the wave-
spectrum function. The wave potential ¢, thus 13 expressed in terms of a
familiar Fourier superposition of elementary plane waves propagating at angles 6
from the ship track given by tan = t. The wave-spectrum function K(t) evidently
contains essential information directly relevant to a ship's wave pattern and
wave resistance. In particular, the wave resistance R experienced by the ship

i1s defined in terms of the wave-spectrum function by means of the well-known
Havelock formula

R/ (pUPL?) = [T [k(e)]%p dt .

It i{s convenient and useful to express the wave-spectrum function K(t) as
the sum of two terms, as follows:

R(t) = Ro(t) +Ke(t) ,

where Xy represents the (zeroth-order) slender-ship approximation, which is
defined explicitly in terms of the Froude number and the hull shape, and K¢ the
Neumann—Kelvin correction term in the Neumann-Kelvin approximation Xg + K,
Both the terms Kg and Ky are defined as sums of integrals along the ship water-
line and over the hull surface. These waterline and hull integrals nearly cancel
out in the expressions for both Koy and Ky and modified expressions for both of
these terms have been obtaineds The cancellations between the waterline and the
hull integrals are more important for the Neumann-Kelvin term K4 than the
slender-ship approximation Kp. Only the term K¢ is considered gere for brevity.

The usual expression for the correction term Ky in the expression for the
Neumann-Kelvin approximation K +'K¢ to the wave-gpectrum function K takes the
form

Ky (t) = Ky(e) + 1oky'(e) + azKH'(t) with o = p/F2 ’

where Xy and Ky' represent waterline integrals (these two integrals can of course
be grouped together) and Ky' corresponds to a hull integral. In the foregoing
expression ¢ is a real number that usually varies between about 10 and 1000
since we typically have 10 < 1/F2 100 and 1 { p £ 10 (except for very, short
waves corresponding to even larger values of 57. The terms ioKy' and ozKH' may
then be expected to be dominant and to nearly cancel out, as was already noted.

This phenomenon is depicted in the figure which represents the real and
imaginary parts of the spectrum function Ky in the lower right corner and its
three components Ky , 1oKy' and o"Kg' on the left side. These functions are
depicted for values of t = tand between 0O and 10, corresponding to 0 < 8 < 84°,
for a particular hull form at a value of the Froude number equal to 0.15. The
spectrum function K;, which is determined numerically by adding the three terms
shown on the left sgde of the figure, can be seen to be considerably smaller
than its three components. This is true at all Froude numbers and for all
values of 6. The phenomenon is especially dramatic for large values of §
corresponding to the short waves in the spectrums In particular, the function
K, vanishes fairly rapidly as 6 increases but the waterline integral Ky' and the
hull integral Ky' do not vanish as 8 + 90°.

The new expression for the spectrum function K¢ may be expressed in the form

Ry (t) = Ry*(t) +Ky*(t) ,

where Ky* and Ky* represent modified waterline and hull integrals, respectively.
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These modified integrals, depicted on the right side of the figure, are
comparable to the function Ky and significantly smaller than the terms ozKH' ,
1oKy' and Ky in the usual expression. The cancellations occurring among these
three terms thus are automatically and exactly accounted for in the modified
waterline and hull integrals Ky* and Ky* in the new expression. This modified
expression for the spectrum function therefore is much better suited than the
usual expression for accurate numerical evaluation.

Another interesting feature of the modified expression for the wave-spectrum
function is that it only requires the tangential velocity at the hull, not the
potential, whereas the usual expression requires the values of both the velocity
potential and its gradient at the hull., The modified expression thus defines
the wave-spectrum function in terms of the speed and the size of the ship, the
shape of the mean-wetted hull surface, and the tangential velocity at the mean
hull surface. This expression is suitable for use in conjunction with a
boundary-integral-equation method based on a source distribution or any other
numerical method in which the velocity vector (but not the potential) is
determined at the mean hull surface. It provides a practical and reliable
method for coupling a far-field Neumann—-Kelvin flow representation and any near-
field flow calculation method, including methods based on the use of Rankine
gsources or finite differences. .

A detailed presentation of the modified expression for the wave-spectrum
function is given in Noblesse and Lin (1988). This new expression has been
obtained from the known usual expression by means of several applications of
Stokes' theorem, as was already noted, and by making use of a basic formula from
vector analysis and an asymptotic analysis of the short-wave limit. An
approximate expression, defined in terms of a single integral along the ship
waterline, suited for efficient and accurate numerical evaluation of the short
waves in the wave spectrum has also been obtained by using the Laplace method
for approximating the hull-surface integral. Finally, an explicit approximate
analytical expression for the very short divergent waves in the spectrum has
been obtained by using the method of stationary phase. This asymptotic
approximation is of the form

K(8) ~ F cos’8 [ ] Ko + 2F cosd (Kg - Kg)]  as 8 » 90° ,

where Kg g represent the contributions of the bow and the stern and § Ko that of
the point(s) of stationary phase on the waterline. The amplitudes of the waves
emanating from the points of stationary phase, the bow and the stern are
proportional to the vertical velocity 3¢/3z at these points.
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Comparison of the usual expression Ky = Xy + ioKy' + GZKH' and the new
expression Ky = Ky* + Ky* for the Neumann-Kelvin correction term K¢ in
the expression for the wave-spectrum function K(t) for 0 < § = tans < 10,
The real and imaginary parts of the functions Ky , 1oKy', o' Ky' , Ky* ,
Ky* and Ky are represented for a strut-like hull form at a Froude number
equal to %.%5. The large cancellations occurring among the terms Ky ,
ioKy' and 0'Ky' in the usual expression are automatically and exactly
accounted for via a mathematical transformation in the modified water-
line and hull integrals Ky* and Ky* in the new expression, which is

then much better suited for accurate numerical evaluation.
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