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In order to decrease their first natural frequencies, compliant structures such as ETPM’s
"ROSEAU” tower are fitted with a so-called stabilizer, which is nothing but a box, 55 x 55
m wide, and 65 m high, its top being immersed at 70 m under the mean free surface. Only
the 4 vertical sides are materialized and they consist of 13 plates, 55 m long and 4.5 m high,
separated by slots of about 0.5 m (see fig. 1). Typical range of the horizontal motion is 0 to 2
meters.

The problem considered here is the effect of these slots on the hydrodynamic character-
istics of the stabilizer : added mass and damping, and the resulting motion of the complete
structure under regular waves. The following drastic idealizations and assumptions are made :
1. the square box is turned into a circular cylinder ;

2. potential flow is assumed inside and outside ;

3. a quadratic discharge law is assumed across the slots : PVorlVarl = 2u(pi — p.) (1)
where p; is the internal pressure, p. the external pressure, u a discharge coefficient ( 4 ~ 0.7
from preliminary experiments), and V,, the normal component of the relative velocity.

Hypotheses 1 and 2 allow analytic expansions to be used for the interior and exterior
velocity potentials :
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R,4,z being the cylindrical coordinates. Here z=0 coincides with the real or a fictitious bottom,
and z=h with the free surface, or a fictitious horizontal plane in the infinite fluid case.

Part of the nonlinearity in equation (1) is overcome through Lorentz linearization :
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which is applied to cosf|cosd| as well : cosflcosd| = %cosﬁ
As a result, for the forced oscillation problem, only the cosé components of ¢; and .
need to be considered.

2D POROUS CYLINDER

The general method and the trends of the obtained results are best illustrated in this
simple case. Porosity can be considered as the limiting case of the slots when their number
goes to infinity with a constant total area. Equation (1) in this case takes the form :

PVnernr' = 2#72(1’1' - Pe)

7 being the porosity, defined as the ratio of the slots area to the total area. If Re{i a e~}
is the forced motion, the pressure drop and the radial velocity on the cylinder can be written as:

169
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Ro being the radius of the cylinder, and b an unknown determined through satisfying the
quadratic equation, which takes the form :
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a
from which the added mass and damping coefficients can be obtained :

Cn=2 - C(VCT+4-0) ca=\/§<\/‘—c2+4-c)%

Figure 2 shows these coefficients as functions of the parameter C = (3)2 72 ; 8. It is
interesting to note that the damping coefficient takes a peak value of 1 for C = v/2/2.

3D POROUS CYLINDER

We now assume the cylinder to be of finite extent in the z direction. Due to its submer-
gence infinite fluid is assumed, that means here the fluid domain is limited by two horizontal
planes, at z=0 and z=h, sufficiently far away from the cylinder that no wall effect may occur.
The planes are situated symmetrically with respect to the cylinder, which extends from 2z, to
z;. The following analytical expressions for ; andf ¢, may then be used (with k, = 2n7/ h):
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Equality of ¢;r and @.r at R = Ry permits to get rid of one set of the 4, and B,
unknowns, but numerically the problem is better behaved by introducing as unknowns the a,
defined as :
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with ag = (2Ro)™! an = kn [ﬂﬁ%} - %%;]-1

The following set of equations has to be satisfied :
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(where C’ = (3F)22r%uw)

Linearity is recovered by defining the iterative process :
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Multiplying the first equation by coskmz, the second one by coskmz/(1 — fU=1 (2)am),
integrating them both in z upon their domains of validity, and adding them up, for m=0,...N,
gives a linear system which is solved by a standard Gauss method. This process, for the values
of 7, Ry, and a of interest, converges in a few iterations (see figure 3). (For small values of
72Ro/a a simpler and more obvious iterative process may be derived).

3D SLOTTED CYLINDER

Because of the small motion amplitude of the stabilizer as compared to the slots spacing,
the porous approach yields results in limited agreement with the experimental ones. Assuming
equation (1) to hold on the slots (with p;, p., and V;,, functions of z !), it is quite easy to extend
the "porous” method, the only difference being that different equations have to be satisfied on
the slots and on the plates :
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with f(2) = —giz(£)?llsoce + LA, anan coskaz — aw|| calculated at the previous iteration.

In order to properly represent the flow through the slots a large number of terms in
the a, expansion must be considered (typically a few hundreds). Figure 4 shows some typical
results for the real part of the pressure drop on the lower half of the cylinder (damping com-
ponent).
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RESPONSE UNDER WAVES

The method can readily be extended to this case, the only problem being increased
computer cost. As the free surface (and the associated wave numbers) has to be introduced,
the vertical symmetry is lost and twice as many wave numbers must be introduced at equal
accuracy (with a fictitious bottom not too far away). Second, at the wave periods of interest, the
first two or three orders in the cosmé development of the velocity potential must be introduced
since they are present in the incoming wave field. As the corresponding equations become
coupled through equation (1), this means 4 to 6 times as many unknowns in the linear systems
which must also include the equation of horizontal motion. Figure 5 shows some typical results
for the pressure drop along different generating lines.
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DISCUSSION

Raven: From what sort of tests did you deduce the coefficient in
the quadratic discharge low? It seems to be a tuning coefficient
that must account for all viscous effects in the flow through the

slots, and could, therefore, in fact be dependent on the amplitude
of the motion and so on.

Molin: The discharge coefficient was obtained from tests performed
in a tank with a slotted bottom. Different tests and different
slots were tested. 0.7 is an averaged value, but there was little
derivation from it. As the tests were performed in steady condi-
tions (the water level was kept constant by filling in the tank as
it emptied), the question that arises is whether the same coeffi-
cient may be used in unsteady conditions.
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