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Consider a long, horizontal cylinder, submerged beneath the free—surface of deep water. Such a
configuration can support trapping modes. In order to describe these, we begin by choosing
Cartesian coordinates (x,y,z) so that y = 0 is the mean free surface, the z axis is parallel to the
generators of the cylinder, and y increases with depth. Now, look for a potential ¢ that satisfies
Laplace's equation in the water, o%¥on = O on the cylinder, and the linearized free—surface
condition, K¢ + O¥dy = 0 on y = 0 (where K = w¥g and w is the radian frequency of
oscillation); in addition, ® is assumed to be a trigonometric function of kz, where k is a ;eal
constant.

If 0 ¢ k < K, this problem arises in the scattering of a plane wave by the cylinder : & is
then the total potential, and k = Kcosa, where o is the angle between the direction of
propagation of the incident wave and the z—axis.

If k > K > 0, there are non—trivial, bounded solutions &, but only at discrete frequencies,
i.e. if k is fixed (>K), there is at ieast one value of K for which ¢ is not identically zero ([8],
Theorem 5.2). This result holds for cylinders of any cross—section. It is also known that ¢
decays exponentially as 1x1 — « [7]. These potentials are called trapping modes.

I became interested in trapping modes in 1984, for two reasons. First, I was intrigued by a

parenthetical remark in Ursell's paper [6] in which he constructs a symmetric (even function of
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x) trapping mode for a circular cylinder centred at x = 0, y = f : ', .antisymmetrical trapping
modes cannot be constructed by the present method' (p.350). This encouraged me to look for
such modes, numerically. A boundary integral equation of the second kind (with a continuous

kernel) was derived, using Green's theorem. After discretization, the determinant of the

corresponding matrix was computed, and then zeros were sought. The program was validated by

comparing with the numerical results of Mclver and Evans [S] (they implemented Ursell's method
[6]). Antisymmetric modes were also found above a circular cylinder. Similar results were found
for elliptic cylinders. Trapping modes were also fopnd above rotated elliptic cylinders (so that
their cross—sections were not symmetric about x = 0).

Second, 1 examined a Ph.D. thesis by A.D. Burden on the propagation and excitation of
elastic surface waves along a cylindrical cavity in an otherwise unbounded elastic solid; a finite
number of modes always exists [2]{3]. These waves are analogous to Rayleigh waves on an
elastic half—space. The excitation of Rayleigh waves by a point force is known as Lamb's
problem, after Lamb's famous paper of 1904 [4]. It occurred to me that similar methods should
work for the excitation of trapping modes by a point wave—source, near the submerged cylinder.
This would provide a linear mechanism for their excitation (clearly, trapping modes cannot be
excited by scattering a plane wave from infinity), rather than the nonlinear mechanisms suggested
by other authors [1].

Some results of the calculations and computations described above will be presented at the

Workshop.
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DISCussIoN

Kleinman: Why doesn't the existence of trapping models violate the
Maz'ja uniqueness theorem for submerged bodies?

Martin: The water-wave problem is a 3-D problem, with an infinitely

long submerged cylindrical body; such unbounded bodies are not
allowed by Maz'ja's theorem.

Newman: Could you explain "Rayleigh's hypothesis" and how it
relates, for example, to the field outside an ellipse?

Martin: Consider acoustic scattering (Helmholtz equation) by a
cylinder in 2-D. For a circular cylinder, we can use separation
of variables in polar coordinates; this gives

¢ = Z_AH, (D (kr)eind | (*)
where A, can be found using the boundary condition on the cyl-

inder. The Rayleigh hypothesis (RH) says that ¢ can be expanded

as (*) for cylinders of any cross-section. In general, this is
false. It is known that the RH 1s true for some smooth cross-sec-
tions. Given any particular cross-section, there are methods for
determining whether the RH is wvalid, or not; see e.g. van den Berg
& Fokkema, 1979. In the case of an ellipse, with centre at r=0,
foci at x=tc and semi-minor axis of length b, the conclusion is
as follows; the RH is valid if b2c and is false if b<c.

For a review of the RH (old, but instructive!), see the paper
by R.F. Millar in Radio Science, 1973.

Tuck: 1) Are the anti-symmetric eigenfrequencies interleaved with
the symmetric ones?

2) Is the anti-symmetric multiple expansion complete, in view of
the fact that its n=0 term is (unlike one symmetric case) not
source~like?

Martin: 1) From my limited numerical results, it appears that they
are.

2) Yes. The n=0 term is absent. The n=1 term corresponds to a
horizontal dipole, which (unlike a source) is anti-symmetric.

Ursell: We might alternatively consider a transient line source
near the cylinder. Some of the energy would go into the continuous
spectrum and radiate to infinity, the remainder would go into the
trapping modes which then continue to oscillate without decay.

Martin: A time-harmonic point source excites all values of k for
a fixed value of K. I think that your alternative would also work;
it corresponds to a fixed value of k and all values of K

(through a Fourier decomposition in time of the transient source).
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