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At the Third International Workshop On Water Waves and Floating
Bodies we showed how a stationary Richardson or one step over-relaxation
method could be applied to the integral equations that arise in floating body
problems with linearized free surface conditions. In particular we showed
that if the spectrum of the integral operator is suitably confined then there
always exists a relaxation parameter for which the iteration converges. Left
open were a number of serious questions including:

1. Can we determine whether the spectrum is suitably confined without
explicitly determining it for specific hull shapes so that existence of a
relaxation parameter is assured?

2. Even if we know that such a relaxation parameter exists, can we find
a suitable value for which the iteration converges?

The present paper presents positive answers to both of these questions.
First it is shown that the spectrum of the integral operator for one of the
integral equation formulations is confined in the desired fashion. Then we de-
scribe a successive over-relaxation method in which the relaxation parameter
is updated at each iteration to minimize the residual error. In this algorithm
the choice of the relaxation parameters is explicit and convergence of the
sequence of iterates is proven.

Although the iteration method is equally applicable to a general class
of integral operators we are only able to verify that the spectrum is suit-
ably confined in the context of the particular boundary value problem under
consideration. We will restrict our attention to the floating body problem




in which we seek to determine a velocity potential, ¢, in D,, the domain
bounded by a free surface (y =0), a flat bottom (y = —h), and the submerged
portion of the hull(Co). We seek a solution of Laplace’s equation in D.
which satisfies the radiation condition, the linearized free surface condition
%% + k@ = 0, has vanishing normal derivative on the bottom, and satisfies a
Neumann condition g—ﬁ =V on Cy, the ship hull. This problem is known to
have a unique solution provided vertical rays from the free surface intersect
the ship hull at most once.

The problem may be reduced to the well known integral equation

#(p) + CO¢(Q)%(1”Q)¢S“ = fo V(a)v(p,q)dsq, P € Co (1)

where v is the Green’s function which Fritz John derived for the domain
without the ship. This equation we write in abstract form as

Lo=v (2)

where L is a bounded operator mapping £3(Co) — L£3(Co). It is well known
that this equation suffers from irregular frequencies which means that L¢ =0
has non-trivial solutions for some values of k hence (2) is not uniquely solvable
for those values . Another way of saying this is that zero is in the spectrum of
L, 0 € o(L). One way to eliminate these irregular frequencies is to consider
a different operator,

3 )
#(p) + . ¢(Q)'a—’;‘7;(P,Q)dSq +1n LO ¢(q)5%-(p, q)dsq =

dv
—_— -V , C 3
[,V (@(e.adsq + i, V@) 5o (p @)dsa~V(B)} ECH Q)
which we write in abstract form as
L1¢ = Y. (4)

If Im(n) > O then this equation is uniquely solvable, or 0 & o(L,).
Now recall the result for solving this equation iteratively.

Theorem 1: If

2up (A} = M < oo, inf (A} =m >0
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and 0 < 8y — 6,, < 7, where

Ore := sup {arg (A)}, 0, := i ,
B ) o= o (sl

then there exists a complex number « such that o(f — aL) < 1 and the
solution of (2) is given iteratively by

¢, arbitrary , ¢, = (I — aL)ba_; +av, n > 1. (5)

If k is an irregular frequency then m = 0 and we must replace L by L,.

We now outline a proof of the following theorem which shows that the
floating body infegral equations can be solved in this way.

Theorem 2: o(L,) satisfies the conditions of Theorem 1 and if k is not an
irregular frequency then o(L) also satisfies the conditions of Theorem 1.

Proof: We will confine our remarks to the latter case and consider only
eigenvalues. First note that since L is bounded, |A| < ||L|| for all A such
that L¢ = A¢ has nontrivial solutions (eigenfunctions). Moreover A = 0 is
not in o(L). This enables us to show that appropriate M and m exist. To
show that the spectrum is confined to a wedge shaped domain we proceed
as follows. Assume that L¢ = A¢ . Then define

oy L
/Co-¢(Q)m(p,q)dsq =i, PEDy- | (6)

where D_ is the interior of the ship below the water line (bounded by C, and
the projection of Cp in the free surface). Then using the well known jump
conditions for double layer potentials we find that

u,=Lp—-20=(A—2)¢ on Cy (7a)

u; = L¢ = A¢ on Cp. (76)

These equations together with continuity of the normal derivative of the
double layer enable us to deduce that on Cj

Ay, = (A = 2)y; (8a)
Ju, Ou;
—_—— —, 8b
an on (86)
Then u, and u,; satisfy a homogeneous transmission problem for Laplace’s
equation. Note that $% = 0 on y = —h, u, and u; satisfy the linearized
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free surface condition and u, satisfies the radiation condition since these
properties are inherited from the Green’s function. Now a straightforward
but lengthy reproduction of the standard uniqueness proof yields the fact
that u, and u; , hence ¢, must vanish if Im(A) > 0. Hence a necessary
condition for A € o(L) is Im(A\) < 0. This together with the previous
bounds on ||A|| suffice to establish the desired result.

This means that the conditions for the applicability of Theorem 1 are
fulfilled and there exists an a such that the iteration scheme outlined in (5)
may be applied. Finding such an « is the next task. Previously we proposed
that a be chosen to minimize the residual error in the first iterate with ¢, = 0.
That is , choose a to minimize |jv — aLv| which leads to an explicit value,
a= {"’T-fnz} This choice has been shown to yield useful numerical results but
numerical experiments have shown that it is not optimal and indeed does
not suffice to give to give convergent results in some extreme cases where
canvergence could be obtained with a better choice.

There is another iterative method, a successive over-relaxation method
wherein a new relaxation parameter is defined at each iteration step to min-
imize the residual error. Specifically it consists of the algorithm

¢, arbitrary , ¢, = (I — @nL)dn-1 + @av, n > 1. (9)
where (6 Lény)
n-19 n-1
an = ) (10)
"L¢n~1“2

This algorithm is shown to converge for all cases when not only does there
exist an a such that o(I — aL) < 1, i.e. Theorem 1 holds, but in addition
that ||J — aL|| < 1. If this stronger condition holds then the iteration scheme
in (9,10) converges to the desired solution. The appealing feature is that the
choice of relaxation parameter at each step is completely determined.
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DISCUSSION

Miloh: When dealing with a Fredholm integral equation of the second
kind there is a very efficient method for solving iteratively the
I.E and that is by substracting first the transpose kernel and
using the Gauss flow theorem with «®=1 in the Neumann scheme.How-
ever this procedure fails when solving a Fredholm integral equation
of the first kind, probably due to Picard's theorem which implies
that for thin type of I.E a general solution exists only in the
Lebesgue sense and the numerical iteration scheme may converge unto
a solution which may be ruled out based on physical grounds. Can
you please comment on this problem?

Kleinman: To solve Lu=v when L is a first kind equation (or
even a second kind equation with unempty null space i.e. non
trivial solutions of the homogeneous equation) I believe that the

iteration up=uj_j+tQ v, will still converge and converges to a
function which numerizes the quantity ||v-Lu|l for a varying over
the space H. I think it is also true that the convergence will be
much slower than when || L~1| is bounded. (In the usual case of 1lst

kind equations the operator L is often compact in which case L1
is unbounded,)
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