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Although water waves are usually well described by inviscid-flow theory, the
effects of viscosity and interfacial properties are important for waves of short wave-
length. This, in turn, requires the neglected shear-stress boundary condition to be
satisfied on the free surface. When the free surface is clean and the air above is
neglected, the shear stress vanishes. However, when the water surface is covered
with contaminant (or surfactant), its concentration varies in accordance with the
wave motion on the free surface, causing a surface-tension gradient which must be
balanced by a non-zero surface shear stress. The highly dissipative effect of surfac-
tants has been known since classical times, as summarized by Garrett (1986). We
are motivated by recent radar images of ship waves which show distinctive dark
regions that might be related to the calming effect of surfactants.

In most cases, the study of viscous damping associated with water waves has
been confined to linear theory. Here, we develop an analytical method for weakly
nonlinear waves, which yields an evolution equation for the slowly varying ampli-
tude. For inviscid water, the result is usually the nonlinear Schodinger equation
(NLS), whereas dissipation produces a Ginzburg-Landau equation (GL) here. The
GL equation enables the study of damping and instability of infinite wavetrains
(the viscous equivalent of Stokes waves) and the evolution and attenuation of en-
velope solitons. Solutions to the GL equation can exhibit chaotic behavior under
certain circumstances, which would lead to the production of short waves. How-
ever, here we emphasize the derivation of the GL equation and subsequent damping
coefficients.

Since the fluid depth is much larger than the short wavelengths studied here, we
consider a two-dimensional semi-infinite fluid bounded by a free surface. The fluid
below the free surface has constant density p and viscosity x, and the air above
can be neglected. An insoluble surfactant on the free surface is characterized by
the surface dilational modulus M, which is a measure of the resistance against the
compression-expansion type of surface deformation (Lucassen, 1982). The flow is
initiated by surface waves with small amplitude, and for small viscosity the flow is
irrotational everywhere except in a thin boundary layer beneath the free surface.
This boundary layer is needed to satisfy the shear-stress boundary condition on
the free surface. In general, the thickness of the boundary layer is much smaller
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than the wave amplitude am. Therefore, a coordinate system attached to the free
surface is desirable.

The equations that govern the flow are the momentum and the continuity equa-
tions in the boundary layer and the Laplace equation for the velocity potential in
the outer irrotational region. Normal and shear stress boundary conditions on the
free surface involve the pressure and the surface-tension gradient, respectively. The
kinematic condition is also prescribed. When the reciprocals of the wavenumber k
and the primary frequency w, of the wave are used as the length and time scales,
the following dimensionless groups are formed:

2
Reciprocal Reynolds number : ¢ = k—ﬁ Reciprocal Froude number: § = kg

P w?

3
Nondimensional amplitude : a = ka,, Weber number: T = E—%

kM 1/2

Nondimensional surface dilational modulus: «x = ﬂ—;—e
(-]
where g is the gravitational acceleration. The relative importance of nonlinear-
ity, surfactant, and viscosity is determined through the scaling of a, «, and the
boundary-layer thickness, which is O(¢!/?). Here, we choose & to be O(1) to ob-
serve the impact of surfactants at first order. The relationship between a and
the boundary-layer thickness is chosen such that the amplitude equation can be
determined at third order. ‘
In addition to a stretched variable for the method of matched asymptotic ex-
pansions, we introduce the multiple scales

]

r=a, ¢=a(z—-ct), §=ay,

where ¢, denotes the group velocity of the primary progressive wave and ¢, z, and
y are the nondimensional temporal and spatial variables. Slow modulation in the
vertical direction is also considered to remove the limitation on the water depth,
as explained by Mei (1983) for inviscid flow.

Now it is straightforward to develop asymptotic solutions for the inner boundary
layer and outer potential region expanded in terms of small amplitude . Match-
ing conditions are applied at each order to uniquely determine the solutions. At
first order, the matching condition for the hydrodynamic pressure gives the linear
dispersion relationship

d+T=1

At second order, matching determines the group velocity

1+2T
2 ?

C,=
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and the 'third-order.matching finally yields the desired amplitude equation.
For viscous gravity waves with amplitude of the same order as the boundary-
layer thickness, the result is a single GL equation in its simplest form:

iA, + 21A — %A« =21A2 A,

where A is the slowly varying amplitude such that the free-surface elevation is
described as

n = A(¢,7)e'=".,

Solving the GL equation after dropping the dispersion term gives the damping
coefficient 2¢, which is identical to th& linear result of Stokes. The nonlinear
damping effect can also be shown not to appear at this order from a simple analysis
of the viscous dissipation terms.

When capillary effects are included at larger wave amplitude, O(¢!/*), the am-
plitude equation becomes

. i K2+i(V2r-k?), 1 1972 ~15T +8
i Sh K ) Luro =1 2
1A7+2\/§ 2 Brtl 8( 8T +1)A¢e 1 1 =37 [A]® A.

Since T = €'/t here, it is clear that viscous damping has been enhanced greatly by
the surfactant. Again, the damping coefficient is unaltered from the linear result
of Levich (1962) and others. This result confirms the qualitative experimental ob-
servation of Lucassen (1982).

Preliminary results indicate that the stability of the infinite wavetrain to a side-
band disturbance of Benjamin-Feir type is modified by dissipation. We also will
show some preliminary spectral computations examining the evolution of envelope
solitons in the presence of surfactants. Various coordinate systems for forming the
amplitude equations will be discussed.

This work was supported under the Program in Ship Hydrodynamics at The
University of Michigan, funded by the University Research Initiative of ONR Con-
tract No. N000184-86-K-0684.

REFERENCES

Garrett, W. D. 1986 ONRL Report C-11-86, pp. 1-17.

Levich, V. G. 1962 Physicochemical Hydrodynamics, Prentice-Hall.
Lucassen J. 1982 J. Colloid Interface Sci. 85, pp. 52-58.

Mei, C.C. 1983 The Applied Dynamics of Ocean Surface Waves, Wiley.

103




DISCUSSION

Miloh: Why do you call this the Ginzburg-Landau equation and not
the non-~linear damped Schrddinger equation?

I wonder if the nonuniformities found in the solution for
T=1 and T=1/3 have to do with the Wilton ripples resonance? In
the KdV formulation we know that leading order dispersion term
which appears in the form of the third derivative of the amplitude
will vanish and a next order term, i.e. fifth derivative, has to be
considered. Is this related to your singularity?

Joo, Messiter & Schultz: The non linear damped Schrédinger eq. may
indeed be more appropriate to our amplitude eg. However, an evolu-
tion with cubic-nonlinear, dispersion and dissipation terms has
been called Ginzburg-Landau eqg. in the literature including Moon et
al. (1983), Keete (1985) and Deisslei (1985).

The case for T=1/3 1is related to Wilton's ripples. The non-
uniformity can be removed by considering a superposition of a fun-
damental wave and its second harmonic both at first order and by
adding an intermediate slow-time scale, as is done by McGoldrick
(1970) for an inviscid flow. Here, an extension of his analysis
enables us to get uniform results near T=1/3.
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