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The hydrodynamic behaviour of bodies at a small forward speed in waves
have been studied by some authors; among those are Huijsmans and
Hermans(1985), and Zhao and Faltinsen (1988). The translating pulsating
source potential is used in all these investigations.

Here we propose an alternative method. The important features are that the
forward speed effect can be separated from the zero forward speed solution
and that we do not use the complicated pulsating translating source
potential in numerical calculations. The advantage is that the forward
speed effect can be taken into account by a post-processor to an existing
diffraction-radiation computer program. Besides, in the range of forward
speed where the theory is valid, the forward speed correction can be
calculated once and for all.

First we shall consider some of the implications of relaxing the
assumptions of slenderness. We define a steadily moving Cartesian
coordinate system with the z axis pointing upwards, the x axis pointing in
the direction of forward speed, and z = 0 chosen on the undisturbed water
surface. At small forward speed, up to the £first order of Froude number
Fn=U//(gL), the free surface condition for the unsteady potential & is,

® WVe +gd -Up & =0 0
pp AWV + g2, - Ug 2 =0, on =4, (1)

where W = U%(&-x), and Ug 1is the steady potential which satisfies the
"rigid wall" condition on the mean free surface. Thus it is given by the
"double-body" solution. In the far field, the free surface condition
reduces to

Qtt - 2U<I>Xt + g@z = 0, on z=0,
(2)
after the steady potential has been neglected. Note that this may not be
justifiable if the steady potential does not satisfy the "rigid-wall"
condition. These two conditions are used by Zhao and Faltinsen (1988).
Within a linearized framework we can separate the time dependengwgactor by
expressing the unsteady potential into a complex form & = Re[ge ] with w
the frequency of oscillation. Suppose that all quantities can be expanded
into Taylor series with respect to 7, for example,
0 (L)
6=+ w 3
with 7 = Uw/g. Substitution of this into the Laplace equation and boundary
conditions leads to a zeroth order problem, a first order problem, and so
on, after ordering in r. The first two free surface conditions are
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97




In the far field equation (5) reduces to
(D (D) (0)
ko' + g, = 2187,

on z=0.

(6)
Now we assume that the water depth is infinite, and we divide the fluid
region into an inner domain and an outer domain. For floating two
dimensional bodies the two domains are separated by a large semicircle
which encloses the body, with the centre on the free surface. For
submerged bodies a circle which encloses the body is used.

In the inner domain various alternative numerical methods can be applied.
In our implementation a boundary integral expression is wused with the
simplest Rankine source Green function. In the outer domain we use Green’s
second identity with a pulsating source Green function to express the
potential ¢ by means of integrals over the joint surface S. of the inner
and outer domain, a control surface S, at infinity and the free surface §

bounded by SJ and SC' After ordering, we have F

(0)
s L j (e3¢ ¢ ¢(0) 5 as,

(7)
(1)
J (G ¢ ¢(1) ) ds + J,
(8)
where
(l)
6¢ (1)6G
J (G 3n) ds,
S +S
(9)

and for smooth body contours a takes the value 2x. The integral over §

does not vanish because we have used a pulsating source Green function
insteif) of a pulsating translating sogsse Green function. The expression
for ¢ is similar to that for ¢ except for an extra integral. To
calculate this extra integral the asymptotic behaviour of the velocity
potential 1is found to be useful. This can be obtained from the asymptotic
behaviour of the potential corresponding to a translating pulsating
source, given by Haskind (1954):

5. . 2mi k(1427 ) [z4n-sgn(x)1(x-6)]

+0(rdy,  for |x| - =,

Jl-4r" (10)

where r*-sgn(x)r The body velocity potential behaves similarly. With the
asymptotic solutions we can integrate equation (9) explicitly over S

o
After some algebraic manipulations J reduces to
: (0)
i D) ) ), . (0)
st o e - e, - @@
S
F (11)

where *o indicate at x=to, z=0. These three terms must be evaluated
together in a limit sense.

So far we have not discussed whether the expansion (3) is valid throughout
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the fluid domain. In fact, such an expansion is only convergent in a local
domain around the body. The divergence of the expansion in the far field
is caused by the fact.that the forward speed modifies not only the
magnitude of the potential, but also the far field wavelength(cf.
equation(l0)). Therefore, strictly speaking, equation (9) 1is not
appropriate. But equation (11) is wvalid and it can be derived on a
rigorous basis. Suppose we decompose the total body potential into a far
field solution plus a remaining term. The latter would be a local
potential decaying to zero at large distances. The perturbation is
therefore valid for this latter term throughout the fluid domain. For the
integrals associated with the far field solution, integration can be
performed analytically, and it can be shown that such integrals in the
boundary integral expression can be expressed as functions evaluated at
the intersection points of S_ with S,. These functions can be expanded in
7 since they are evaluated locally. Following this procedure, the result
can be proven to be the same as equation (11). The perturbation theory is
then complete.

The merit of the present method depends on how efficient the free surface
integral J can be evaluated. Because the integrand is an oscillatory
function, it 1is necessary to separate the oscillatory part of the
integrand from the steadily d%g?ying terms. It is desirable to find some
analytical expression for ¢ , and for this purpose we have developed a
set of multipoles for the zero-speed solution such that the potential in
the outer domain can be expressed in terms of multipole expansions. These
multipoles differ from those obtained by Ursell(1949, 1950); they may be
regarded as a generalization of those of Ursell(1949) for floating
bodies, permitting floating and submerged bodies to be treated in the same
way. Details will appear in a future paper. With these multipoles we can
separate out the non-decaying oscillatory part of the integrand, which
after explicit integration cancels the oscillatory parts of the last two
terms in equation (11). The free surface integral can then be calculated
effectively. Another difficulty for the problems of unsteady motion with
forward speed is the evaluation of second derivatives of the steady flow
potential in the body surface condition. This can be circumvented by using
an integral transformation theorem developed by Ogilvie and Tuck(1969).

We have calculated the zero-speed solutions for several contours, using
two numerical methods: (a) the inner domain integral expression coupled
with the outer domain integral expression (7); (b) the inner domain
integral expression coupled with the outer domain multipole expansions.
Numerical results agree well with each other, and they also agree well
with results obtained by other authors using different methods. They are
not to be shown here, because of shortage of space.

We also have calculated the forward speed correction terms for a submerged
circle, and some preliminary numerical results are plotted in Fig.l(a)
and Fig.l(b). These are the variations of the sway-heave added mass and
damping coefficients with frequency, for d/a=2, where d is the distance
between the centre of the circle and the free surface and a is the radius
of the circle. In the small forward speed theory, the cross-coupling
coefficients are linearly proportional to 7. In these results only the far
field free surface condition (6) is used, since the body is assumed to be
deeply submerged. The numerical results agree well with those of Wu (1989)
obtained from a more general method in which the forward speed 1is not
assumed small. One should note, however, that the present small forward
speed theory is expected to be invalid at very low frequencies, due to the
simplification of the free surface condition. The strong oscillation of
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the numerical results as ka»0 suggests that they should be discarded.
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Fig.l. Forward speed correction to the sway-heave
coupling hydrodynamic coefficient for a submerged
circle. d/a=2. (Zero-speed results: a23-b23-0)

DISCUSSION
Grue: Comment on the far-field expression of the ?—D Green func-
tion: There seems to be a misprint in the expression you guote from
Haskind. This will cause a difference in the Kochin-function, say
10-20%, in the order of T. Since the wave-drift damping is quad-

ratic in the Kochin-function, this leads to a factor 20-40% in the
wave-drift damping.

Hu & Eatock Taylor: We thank Dr. Grue for pointing this out, which
is relevant to work on the three-dimensional problem. The results

in the Abstract are for two dimensional bodies, and are therefore

unaffected by the misprint in Haskind's paper.
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