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Introduction

At the first Workshop in 1986, McIver and Evans presented a paper
on sloshing frequencies, in which they described a method for
obtaining the resonant frequencies of oscillation of fluid in a
two-dimensional rectangular  tank containing a thin baffle.  The
method involved the use of eigenfunction expansions and the solution
of an integral equation for the unknown velocity above or below the
baffle.

An approximate eigenvalue relation (equation 19) was also given
for an arbitrarily shaped baffle on the basis of the wide-spacing
approximation in terms of the (assumed known) reflection and
transmission coefficients for the baffle in an infinitely wide tank.
It was shown that this approximation was remarkably good at predicting
even the lowest eigenvalue where the wide-spacing assumption is
clearly invalid.

We return to this approximation here but we use a different
approach. The expression given by McIver and Evans for the
determination of the resonant frequencies is unsatisfactory since it
is complex, whereas the solutions sought must, on physical grounds, be
real. We show, using the new approach, how an alternative equation
can be derived, which is real and which, in the case of a symmetric
obstacle, depends solely on the phases of the waves radiated to
infinity due to forced symmetric and antisymmetric motions of the
body. The method can be extended to any number of obstacles and it is
shown how a closed form expression can be derived for the eigenvalue
relation or for the reflection and transmission coefficients for the
case of n identical equally-spaced obstacles.
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Formulation and Solution

The tank is assumed to occupy -c < x < b, 0 <y <h so that y = h
is the undisturbed free surface with the obstacle positioned around
x = 0. In the vicinity of the right hand wall x = b, assumed to be
far removed from the obstacle we may write

p~ {Be'k(x=®) 4 B g tkix-2)} coshky (1)
satisfying the condition of zero normal velocity on x = b, whilst in
the vicinity of the left hand wall x = -c, also assumed far removed
from the obstacle we may similarly write

g~ {C etkix+e) 4 C g tk(x+e)} coghky. (2)
Here k is the positive real root of the equation
w?*/g = K = k tanh kh. (3)

and is to be determined, whence the resonant frequency w is given by
(3).

Consider, in the infinite strip -o < x < w, 0 <y <h, the
radiation potential ¢,(x,y) whose normal velocity is real on the

.obstacle, perhaps corresponding to a rigid body motion, and which

satisfies
¥ ~ AT e'**coshky, x — +w
~ A7 e '**coshky, x — -
Define Yt = 9i-9

where a bar denotes complex conjugate. Then the normal derivative of
v\ vanishes on the obstacle. Under the wide-spacing approximation we
shall assume that (1), (2) hold as x — +w, -® respectively.

Then application of the identity

Jolo B Bes =
around all boundaries closed by lines x = #X, 0 < y < h, where X is

large enough for the asymptotic forms of ¢, y: to hold, gives

|AT|C cos(kc+67) + |A7|B cos(kb+67) = 0 (3)
b4

where AT = [Aﬂelei .

By choosing first i =1 and then i =2 corresponding to a
different independent rigid body motion, we obtain two homogeneous
equations for B, C. '
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In the interesting case of a body symmetric about x = 0 for which

AT =Al = A, 60 =0,20,, Ab=-4A zA, 65 =6, 726, we
obtain

cos(kc+fs)cos(kb+d.) + cos(kb+ds)cos(kc+ba) = 0.
(4)
This is a real equation from which, given b, ¢, 8., 6, the wavenumber
k and hence the resonant frequencies can be determined. Now the
Newman relations for a symmetric body are

218 218

R+T=-e *,R-T=-e *. (3)

T

It is known that for a thin baffle R + T = 1 or 4, = 3. It then
follows from (5) that tand, = iR/T.
Substitution of these results into (4) and re-arrangement gives
sinka = 2iRT"*sinkb sinkc, (a = b+c)
in agreement with McIver and Evans.
Again, for a symmetrically-positioned symmetric obstacle, b = c
so (4) reduces to

cos(kb+8s)cos(kb+8.) = 0 (6)
with solutions kb = |-8s + (2n-1)7/2, n = 1,2,.
-0, + (2m-1)7/2, m = 1,2,. (7)

This is confirmed by the McIver and Evans result which reduces to
R#T = e~2'¥® in this case, and which, after use of (5) agrees with
(7). A

Results based on (4) will be presented and compared with results
for a symmetrically positioned rectangular block on the floor of the
tank obtained by solving the full linear problem using matched
eigenfunction expansions and integral equations (Watson, private
communication).

The above ideas can be extended to treat any number of obstacles.
If the obstacles are identical and equally spaced, considerable
simplification occurs and explicit results obtained for both the
reflection coefficient in the scattering problem, and the eigenvalue
relation to determine the resonant frequencies.

We consider n identical symmetric bodies, each contained in an
interval of length a, its centre a distance b from one end, ¢ from
the other. At the left boundary of the m®" interval we assume
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travelling waves of amplitude 4., Ba and at the right boundary,

Aavi, Ba.i. The ideas described above provide a matrix relation
between these quantities in the form

t(kc+o ) -1 (kceo - b i
e A e ‘s) Am t(k +% ) l(kb#%) Am¢

e e

t(kc+oe ) ~i(kc+o )
e 3 e 3

]}
~
o
+
L3
®
——
(078
N

-1 (kbso )
Ba e a e

for m = 0,1,2,... n.

The special case m = 0, 4, = By, 4, = B, corresponding to the sloshing

problem for a single body confined between walls, can be seen from (3)
to reduce to (4).

It will be shown, by successive application of (8), how 4., B, can
be expressed in terms of A,, B, in closed form and hence how an
explicit form can be obtained for the reflection and transmission

coefficients, as well as the conditions for resonance in this more
general case.

DISCUSSION

Newman: In the figures showing kb as a function of h for a
rectangular bottom obstacle it would seem that kb should tend to

non-zero (standing wave) values in bhoth limits h—0 and h-31.

Evans: Theorems suggest that as you reduce the water volume by
increasing the size of the obstacle, jxu;j;u;gﬁnmi_ﬁngg_ﬁnxﬁagg ghe
sloshing frequency showed decrease monoton}cally. It is not entire-
ly clear that this applies here in the limit as the block preaks
the surface. For the geometry shown one might expegt the first few
curves to tend to zero as the height of the block increases. I am
unable to explain as yet why curves also appear to tend to zero.

Mehlum: You showed slides with remarkable agreement between "exact
theory" and your wide spacing approximation for square boxes. Have
you tried a similar comparison for submerged cylinders?

Evans: We have obtained approximations to sloshing frequencies in a

tank containing a submerged cylinder but have not yet developed an
'exact' theory with which to compare our results.
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