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The mixed Eulerian-Lagrangian method, originated by Longuet-Higgins and Cokelet (1976),
is very powerful for solving time dependent nonlinear free surface problems. The method is a
time marching procedure which requires two major computations at each time step: (1) solve
a boundary value problem (BVP); (2) update the free surface position and the potential on it
by integrating the nonlinear free surface conditions. Since most of the computation time will be

spent on the BVP, it is important to have an effective solution method for the time marching
procedure to be of practical use.

The boundary integral method (BIM) is a powerful alternative for the solution of the BVP.
There are two versions of BIM: the direct and indirect versions. In the direct version, the
boundary integral equation (BIE) is derived from Green’s second identity and the solution is
obtained directly by solving the BIE. In the indirect version, the solution is assumed to be a
superposition of some sort of singularity distribution over some region. By applying the boundary
conditions, one obtains a BIE for the unknown strength of the singularity. Usually, the singular
points are located on the boundary surfaces and singular formulations of the BIE are obtained.

These formulations have been studied and used extensively. However, there are difficulties in the
evaluation of surface integrals with singular kernels.

If the singular points are placed away from the boundary surfaces and outside the fluid
domain, non-singular formulations of the BIE are obtained. By applying Green’s theorem to ¢
and a simple wave source with the singular point lying inside the body (i.e. outside the fluid
domain) and using a bilinear expansion of the source, one can obtain the so called “null-field
equations for the water wave radiation problems” with unique solutions (Martin, 1981). Heise
(1978) studies some numerical properties of integral equations in which the singular points are
on an auxiliary boundary outside the solution domain for plane elastostatic problems. Han and
Olson (1987) use an adaptive method in which the singularities are located outside the domain
of the problem and allowed to move as part of the solution process. Jensen, Mi and Séding
(1986) solve the wave resistance problem successfully using a Rankine source method in which

the sources are distributed above the free surface. All of these works show the effectiveness of
non-singular formulations.

The following are several expected advantages of the desingularization over the singular for-
mulations, some of which have been studied by previous investigators:
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. Singe the kgrnels are non-singular and special care is not required for the singular contri-
bution, the integrals can be performed by simple numerical quadratures.

e Fewer nodes may be required since simple quadratures ease the restrictions of a flat panel.

e There is a larger flexibility of choosing the fundamental solutions. Higher order singularities
can be used more easily. ‘

e An overfietermined system can be easily obtained, which may lead to better results. The
calculations of Schultz and Hong (1988) show the effectiveness of a desingularized and

overdetermined system in two dimensions. Their results show greater accuracy and faster
convergence.

Compared with the direct version, the indirect version has two more advantages:

o Integrals of singularity distributions may be replaced by a summation of concentrated
singularities, which makes the computation even simpler.

e Since the indirect version requires no integration over the far field enclosure, one may expect
smaller error due to the trunction of the free surface and fewer unknowns may be required.

However, the desingularization also causes some problems, which may lead to incorrect so-
lutions if treated improperly: (1) little experience on the placement of the singular points is
available, and (2) uniqueness and completeness have not been proved for general problems. How-
ever, if the singular point is located a distance away from the boundary surface in proportion to
the local mesh size, and as the mesh becomes finer, the singular point will get closer to the the

surface. In the limit, our non-singular formulation becomes identical to the singular formulation.

In this paper, the influence of the distance of the singular points off the surface and the
convergence of the non-singular formulations are studied numerically with some simple potential
problems. The results of a three dimensional flow consisting of a dipole under a flat, ¢ = 0, free
surface are shown in Figures 1 and 2. The distance is characterized by Zs = Z5/ VA. Zy is the
dimensional distance and A is the average area of the local adjacent meshes. The computed values
of the errors of the normal derivatives %ﬁ- on the free surface are measured by Es = —13{-\/26?,

where ¢; = (%;-‘;-),,um - (-g-g),“a is the error at each nodal point and M the number of nodal
points.

Figure 1 shows the results of the the direct version. The results with the exact evaluation
of the panel integration using Newman’s approach (1986) are also plotted with dotted lines for
comparison. As expected, for small Z, (< 0.25), the results using 2x2 Gauss quadrature have
larger errors since Gauss quadrature is inaccurate for small Z,. For large Z,, the solid lines
merge to the dotted lines since Gauss quadrature is accurate. However, the solution is deficient
because the singular points are too far away from the surface to capture the nearly singular
behaviors of the system. It is surprising that in the middle range of Z,, the results using Gauss
quadrature show less error than those using Newman’s approach. The reason is not quite cleaxt at
this moment. One possibility is that the errors from different sources (for example, discretization
and numerical quadrature) cancel each other. Figure 2 shows the results of of the indirect version.
The solution is assumed to be the sum of concentrated sources above the free surface. As can be
seen, the errors are too large for the solutions to be acceptable for small Z, because concentrated
sources can not model the flow well when they are too close to the surface in our formulation.
However, for quite a wide range of Z,, 0.5 < Z, < 3.0, the solutions are very good.
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The computation time required for the matrix set up by 2x2 Gauss quadrature is about 65%
!ess than that required by Newman’s approach, and the time required for the indirect version
is about a quarter of that required for 2x2 Gauss quadrature. The algebraic system is less well

conditioned as Z, gets larger so more iterations are needed. The overdetermination of the system
with the direct version provides no benefit.

Figures 3 and 4 show calculations of waves generated by a source and sink of unit strength
moving horizontally 1.5 units under a free surface. The distance between the source and the
sink is unity and the Froude number based on the depth of the submergence is 1.738. The
nonlinear results updating the free surface using the Euler scheme are compared with the linear
results of unsteady Kelvin sources with the time convolution integrals evaluated numerically. The
comparisons are qualitatively good although there are some differences yet to be analysed.

Additional studies will investigate the use of higher order singularities, overdetermination of
the system with the indirect version, and the use of higher order time integration schemes.
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Martin: Regular integral equations are regularly rediscovered. They
have been used in potential theory, acoustics and elasticity, and
their properties have been studied; see e.g., the work of
S.Christiansen and of U.Heise.

Have you examined the conditon number of your systems, as a
function of 2,? I think that you will find that the condition

number will be least when the points P are located on the
boundary S!

Cao, Schultz & Beck: We agree that the condition number of the
system is minimized when the singular points are located on the
boundary. However, the condition number does not necessarily have
a direct relationship with accuracy of the BIM discretization as
shown in Figures 1 and 2. In addition, our conjugate gradient
matrix solver does not appear to be sensitive to the condition
number although the number of iterations becomes large as 2, in-

creases. When we desingularize on the order of the mesh size, the
condition number appears to be adequate. ‘
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DISCUSSION

Bertram: 1. Why do you use time-stepping to solve steady problems?
2. I suggest enforcing a corresponding linear condition on the free
surface in your time-stepping instead to have an accurate (as pos-
sible) comparison. Later you can go to non-linear conditions and

see what changes. Even for small non-linearities you introduce
unnecessary errors. ’

Cao, Schultz & Beck: 1.We are not merely looking at the steady
problem. Another reason for using time marching procedure is to
delay the difficulties of the radiation condition.

2. We have already done the linear calculations. The results

suggest that a more accurate time integration or spatial resolution
is necessary.

Eatock Taylor: It is interesting to see a revival of the idea of
using the integral equation technique with the singularity points

P placed off the boundary. Van Oortmensen of MARIN (then NSMB)
developed this approach in the early 1970's for linear water wave
diffraction problems; but I believe that the difficulties of defin-
ing the optimum location of the points P for complex bodies led
to the discontinuation of this work. I wonder whether these diffi-
culties would not be even greater in the study of the interation
between a non-linear wave and a surface piercing body.

Cao, Schultz & Beck: Our limited experience indicates that there
is a broad optimum range of Z, for which good solutions can be

achieved with little sensitivity to the change in 2Z,. We would not

expect greater difficulties using non-singular formulations than
using singular formulations in the study of the interaction between
a nonlinear wave and a surface piercing body. In our opinion, the
difficulties of the intersection problem mainly come from the prob-
lem itself (for example, the discontinuity of the solution at the
intersection either physically or mathematically). Nevertheless, we
will have to face these difficulties.

Nakos: It is very worthwhile looking carefully into differenF
discrete formulations of the BVP you consider. And I wou}d like to
congratulate the authors for their contribution. A qugstlon that
arises, however, is the well-conditioning of the matrix as the
singular and control points move apart from each other. One expects
the condition number to have a minimum when the sources are placed
on the boundary. What are your comments about the errors due to the
inversion of an ill-conditioned matrix and may that belan explana-
tion of the convergence studies shown in the presentation?

Cao, Schultz & Beck: The reply to P.A. Martin should also.apswer
your question. In addition, our numerical tests show neg}lglble
differences between double and single precision computations for
the acceptable range of 2Z,.
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