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Abstract

A theoretical method to analyze motions and loads on a large volume structure in
current and regular incident deep water waves is presented. The structure is free to oscillate
harmonically in six degrees of freedom. The fluid motion is incompressible and the effects
of flow separation are neglected. It is discussed under what current and wave conditions
the flow around the body will not separate. It is pointed out that the Keulegan Carpenter
number KC and the ratio between the current velocity U and a representative amp}Titude
Ux of the oscillatory fluid motion are important parameters. It is shown that for bodies
without sharp corners that there exist many practical situations involving wave-current
effects on large volume structures, where flow separation does not occur. The conclusions
are partly documented by experimental results. ‘

The theoretical solution for the velocity potential is written as a series expansion in
the wave amplitude ¢, and the current velocity U. The problem is solved to first order in ¢,
and first order in U. It is assumed that ¢, /L, the wave slopes of the different wave systems
and the Froude number U//Lg are asymptotically small. Here g is the acceleration of
gravity and L is a characteristic length of the body. In the case of a floating half sbhere
L may be chosen as the diameter. A consequence of the analysis is that any effects of the
steady wave systems are neglected. Further, 7 = “La'-’- < 1, where w is the frequency of
oscillation of the body. This implies that the body generates wave systems in all directions.

The steady motion potential ¢g satisfies the rigid free surface condition. Since the
effect of flow separation is neglected, ¢s can be found by a standard numerical method.
In the numerical results for a floating half sphere to be introduced later in the text, an
analytic solution for ¢s was used.

The time dependent velocity potential is split into components &7, (k = 1,6) @asso-
ciated with the six motion modes 7, , the incident wave potential ®,€*“* and a diffraction
potential ®,¢*“*. Here, ¢ means the complex unit and ¢ the time variable. It can be shown
that ®, (k = 1,6) satisfy correctly to O(U) the following free surface condition
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Here (z,y,2) is a right-handed coordinate system with z-axis positive upwards and the
origin in the mean free surface. The sum of the diffraction potential ®,e'“* and the
incident wave potential ®,e’“* satisfies also eq.(1). In the body boundary condition, the
interactions with the steady motion potential are taken care of. In addition a radiation
condition is specified.
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We write the solution at some distance from the body as a sum of multipoles (including
sources) with singularities inside the body. The miltipoles satisfy the radiation condition
and the free surface condition (1) with V¢s = Ue,. Here e, means a unit vector in the
current direction. For a general body several smgularlty points are used. In the numerical
example with a floating half sphere to be presented later in the text, only one smguﬂanty
point in the center of the sphere (i.e.(0,0,0)) was used. The Green’s function Ge'“!
representing a source function can then be written as
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Further, H is the Heaviside step function and E, is the exponential integral. The current
direction is assumed to be along the z-axis when deriving eq.(2). A similar expression for
G has been derived by Grekas (1). Higher order multipoles are obtained by differentiating
the source expression with respect to the singularity coordinates. The coefficients in the
multipole expansion were determined by combining it with the following integral expreﬁsion
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where S = Sp + S, +Sc and R = \/(z — 2,)? + (y — 1) + (2 — 2, )2. Further Sy is the
mean wetted body surface and S is a vertical cylindrical control surface extending from
the mean free surface to the sea bottom with cylinder axis coinciding with the z-axis. S,
is the mean free surface inside So. At the intersection between S and Sr,, the simpliﬁed
free surface condition with Vs = Ue, is assumed valid. Further dS(z,y,?2) is a surface
element and n is the normal vector to dS. The positive direction of n is into the ﬁuld
Equation (3) is rewritten by replacing 8®, /9n with the free surface condition (1) on S¢;
and the body boundary condition on Sg. At Sg, the multipole expansion of ®; is used.
By letting points (z,,9:,2,) in (3) approach points on the bounding surface S, we obtain
a Fredholm integral equation of the second kind. In the numerical solution Sp and Sr,
are divided into plane quadrilateral elements. The velocity potential is assumed constant
over each element. First order derivatives of ®, along the free surface is numerically
approximated in terms of ®; on adjacent elements. The integral equation is satisfied at
the midpoint of each element. This gives N number of equations. Number of unknbwns
are N + N, where N is the number of terms used in the multipole expansion. Sufficient
number of equations for the unknows are obtained by matching inner and outer solutjons,
i.e., equation (3) and the multipole expansion, at the control surface S;. This is done by
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th.e least square method. The consequence of using a simplified free surface conditon (1)
with Vés = Ue, is discussed. |

Having obtained ®,, we can find added mass and damping, wave excitation loads,

‘motions and wave drift forces. Numerical results for a floating halfsphere are given. The

results show that drift forces in particular, have a strong dependency on the current veloc-

ity. The trend is similarly as pointed out by Zhao and Faltinsen (2) in the two-dimensional
case. ‘
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Reed: Please clarify the definition of the steady, second-order force. Does F; include “drag” due
to current? How large is the drag due to steady flow relative to the second-order force; and are
separation effects included?

Zhao & Faltinsen: Separated flow effects are not included in the calculation of the mean second-
order force. Our experiments indicate that the flow will not separate around bodies without sharp
corners if the Keulegan-Carpenter number is low and the current velocity is smaller than the
amplitude of the horizontal wave velocity component at the free surface. If the flow is not separating
in combined wave and current, it would be incorrect to add current forces in still water to predict
mean second-order forces.

The relative order of magnitude between the drag due to steady flow and the second-order forces
will depend on the Froude number, based on steady flow, and the Keulegan-Carpenter number.. Tlale
ratio between the drag force due to current and the second-order force can be written as 5%%1r3 ‘ KFG,
(F, = Froude number based on current velocity and draft, KC = Keulegan-Carpenter number
based on incidental wave oscillatory motion at the free surface, Cp = drag coefficient in current only,
Cw = non-dimensionalized second-order force). If Cp = 0.2, Cy =0.5, F, =0.06, KC = 0.5 we
see that this ratio is 0.09.
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Kashiwagi:

1. Will your method give reasonable results if the contribution from the steady perturbation
potential is neglected in the free surface condition?

2. Did you confirm that ybur results satisfy the Haskind-Newman relations with forward speed?
Zhao & Faltinsen:

1. We have tried to neglect the effect of the local steady flow around the body, i.e. to
approximate the steady flow by the far-field steady flow over all of the free surface, but the numerical

results were not satisfactory. Energy relations between the damping coefficients and the radiated
waves were not satisfied.

2. In the calculation of wave excitation loads we have generalized the Haskind-Newma.#l re-
lation. We found that the generalized Haskind-Newman relation agreed satisfactorily with results
following from direct pressure integration.

Wau: I would like to congratulate the authors for showing us interesting solutions to a difficult
problem of great importance. In view that little is known even for a beam current transversely
incident on a ship’s hull, without any surface waves, I wonder if it would be desirable to first /deal
with the surface current force alone before such further complications are included, as those effects
due to the orbital velocity of fluid particles on the unsteady movement of the flow separation points
(or lines) and in turn on the variations in the resultant hydrodynamic forces and moments.

Zhao & Faltinsen: It is not necessarily easier to consider the effect of current only. When
U/Uy < 1, (U = current velocity, Uy, = amplitude of horizontal wave velocity component at
the free surface) the flow around bodies without sharp corners is not likely to separate for small
Keulegan-Carpenter numbers. Our experiments with a hemisphere show this. If U/U) > 1iand
if the flow separates, it may be more desirable to first analyze the effect of current only. In our
analysis we have assumed that the flow does not separate.

Sclavounos: In wave-current-body interaction problems it is often assumed that the principal
effect of the current can be accounted for merely by the Doppler shift. The linear forces in your
computations seem to indicate otherwise. Is it possible to identify the principal mechanism respon-
sible for the differences between U = 0 and U > 0 in the linear and drift forces?

Zhao & Faltinsen: We think an important mechanism is the effect of the local, steady flow around
the cylinder. The use of a Doppler shift would, therefore, not be sufficient to explain the results.
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