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INTRODUCTION

In recent years there is a great interest in the prediction of second-order
interactions of waves and ocean structures. Most of the published work deal with
the case of vertically axisymmetric bodies. Some authors are interested in the
calculation of the second-order exciting forces only while others solve for the
second-order velocity potential.

The method presented in this paper addresses the calculation of the second-
order potential and especially the way of calculation of the integral of the second-
order free-surface inhomogeneity,for the case of finite water depth. It 15 based
on the derivation of elementary potentials accounting for the second-ordér free-
surface effects due to the interaction of two pulsating sources or the interaction
of a source with the incident wave potential. The determination of these potential
functions simplifies greatly the solution of the BVP for the second-order velocity
potential, since the remaining part of the solution becomes tractable by the com-
mon methods of the first order solution. The method implies no restrictions as to
the application to bodies of arbitrary shape.

STATEMENT OF THE PROBLEM

The main difference between first- and second-order Boundary Value Pro-
blems for the corresponding velocity potential is the existence of a nonhomoge-
neous term in the free-surface boundary equation. Because of this term, an in-
tegration over the free surface is required when applying Green's theorem for
the evaluation of the second-order potential or simply the exciting forces. In the
present paper we describe a method for the analytical evaluation of this integra-
tion in the part of the free surface outside a circle of certain radius surrounding
the body. The integration inside this circle can be done numerically in a suffi-
cient way. '

Decomposition of the Potential

, It is well established that the first-order velocity potential can be approxi-
mated by the superposition of a finite number of pulsating sources distributed
over the wetted surface of the structure (Green's function method). Now, each
of these elementary sources can be thought to interact with the others and with
the incident first-order wave potential through the nonlinear terms in the free-
surface condition. The results of these interactions contribute to the second-
order velocity potential. There are other contributions to the second-order po-
tential too, but they can be calculated by methods completely analogous to those
of the first-order problem. Thus, the most important of the second-order veloci-
ty potential can be thought to be decomposed into a number of elementary - po-
tentials arising from the interaction of two pulsating sources or one pulsating
source and the incident wave.

The Elementary Potentials

Let Oxyz be a right handed Cartesian coordinate system with O at the free-
surface and Oz pointing vertically upwards. Let F(xp, yF, zr) and E(XE, YE, 2E)
be the points where two pulsating sources are located (see Fig. 1). We denote by

cpg; the second order potential resulting from the interaction of the two sources
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where co( ), @g’) mezan the first order veloc..t‘y' potentlals (Green's funcdons), due
t0 the sources at F and E and <o() the first order incident wave potenua..

We shall czlculate the values of cpéz% and cpgl-) at a point P located vezttice.'lly_
unde* 0 (%p=9, yp=0, zps0). The assumptions made here, namely yr=0 and xp=9,
vp =0 do not affect ganera.uy, but simplify g‘re atly the nrasented results. More com=-
pncated formulas are developed for- the general case.
Using Green's third theorem over,the fluid domain, we obtain:

- 4nol) (@) = —j G, (P, adl (R dSy
@

- 4mp§’ @) = fe ®, Q)a“(Q)dsQ
Sp

where Sg is the frea surface (z=0), Q 2 pomt of the free surface, and G,(P,Q)
‘the Green's function of a pulsatmg source at Q, referred to field point P and for.

frequency 2uw.

We use John's series |4]| to represent 9p(Q), 9g(Q), G (P Q). Ouly one
term In the saries has proved to be sufiicient for the desn:ed accuracy, since
higher terms converge rapidly to zero for the distances of Q from P,F,E that we
us2 in our annhcatzon. Nevertheless the theory-is also ex‘panaed to inciude more

than one terms.-

(x) Q)

(4)

05’ (@ =G(Q5) 7 7(zp) B, (k7g)

G,(P,Q) = B(25) H,y(k,R)
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where k, and k, the wave numbers. of freouency w and 2w respectvely and H,
the Hanke!l functon of first kind and of zero order.

Next, we introduce Graf's addition theorem [5| to represent Ho(korFi) and
H, (klrE) as : ,
Hy(k,rp) = J,(k,pp) Ho(k,R) + 2 L J (k,pp)H (K R)cosnd
n=1 )
(3)

© .
Hc(erg) = Jo(klpE)H,(klR) + 2 ZlJn(kLpE)Hn(k,.R) cosn(d-g)
n= .

From eq. (4c) we see that G,(P,Q)is indgpendent of 3, so we can write

f Gz(P'Q)“dsQ ’f ‘Gz(P,Q)RdeadO , u=a§zs) or a= aé? (é)
SFZ Rq

Using equations (2), (4), (5), we can prove that
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We introduce eq. (7) in eq. (3) and use asymptotic expansions for t&le Bes-
sel and Hankel functions, so the above equations take the form of series expan-

sions :
k19 ~
o'’ ) @)

3 - 2 - N Y
2(I-‘Q)Rfcv.d\‘.'t I};.C n+§ »  @=agg or a=ag; (8)

“n

After that, it remains to calculate a series of integrals of the form :

f eiCR
dR
n+j
R R

9

These integrals can be claculated by partial -integration and use of Fresnel Sine
and Cosine functions, as suggested in Ref. [3]. -

Discussion of Results

The method described here has been apnhed to several cases with dlfferent
positions of the sources, wave lengths, wave angles and water depths. The re-
sults were chequed ag&inst,numerical integ‘ration using FINGREEN for the calcula-
tion of the Green's functions. The .agreement was excellent in all cases. ‘

Flgures 2.-and 3 show the real part of the value of the integrals

f G:(P,Q)aly Rd® and IG (?,Q)a{) Rav

- -
respectively, as functions of R calculated by the present method (solid line) and
numerical integration (dotted line). The results are almost 1dent1cal even for small

R approxmxately equal to max {pg, Pp}.
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The case presented here is:

rp=30 m, rg=60 m, 2g=-10 m, zg=-7 m, @=1.1 rad, water depth h=100 m,
wave amplitude ay=1 m, wave length A=120 m, wave angle $=2.5 rad.
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Newman: There seems to be a close connection between this work and Sclavounos’ analysis of
“Second-order Green Functions.” The latter work also suggests how to make the transition from
finite to infinite depth.

Zaraphonitis & Papanikolaou: There is a connection to Sclavounos’ work (Ref. [2]), as|far as
the concept of the “second-order Green functions” is concerned. In the present work an algorithm is
presented to evaluate efficiently the free-surface inhomogeneity by analytical means. The method is
valid for arbitrarily-shaped bodies, but only for finite water depth. We do not know of any related
work extending this procedure to the infinite depth case.

Martin: You decompose your potential into two parts, one of these involves the inhomoge;nebus
free-surface condition (with ag‘” on the right-hand side) but no immersed body. How do you define
afgz) over the portion of the free surface which was previously occupied by the body?
Zaraphonitis & Papanikolaou: It is assumed that the free-surface boundary condition is valid
also within the body, t.e. along the extension of the free surface, y = 0, inside the body. Thus, a
“variable pressure distribution” problem is solved leading to the first part of the velocity potential.
On the basis of this, a modified kinematic body boundary condition for the second part of the
velocity potential can be formulated and solved in complete analogy to the first-order problem.

Moreover, instead of solving for two separate second-order potential sub-problems, a direct solution
to the problem can be provided on the basis of Green’s third theorem by assuming pulsating qipoles
of unknown strength on the body surface and pulsating sources of known strength both on the body
and the free surface. Then, the free-surface inhomogeneity is part of the integrand for an integral
going from the body to infinity, as given in this paper.
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