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Introduction

The subharmonic standing waves in a closed basin forced to oscillate
vertically was first observed by Faraday (1831), and later explained by
Benjamin & Ursell(1954) as a form of parametric resonance whose response
amplitudes are governed by a Mathieu’s equation. Ockendon & Ockenden (1973)
applied multiple-scale analysis to obtain an evolution equation governing the
response near sub-harmonic resonant frequencies. Unfortunately, they did not
give explicit forms of the evolution equation for specific geometries, and
could not compare their theoretical results with experimental measurements.

In the present work, the multiple-scale analysis of Ockendon & Ockendon is
worked out for a two-dimensional rectangular basin of arbitrary depth. The
periodic solution of the evolution equation is then obtained analytically. The

- results for the steady (harmonic) response amplitude compare remarkably well

with the experimental data of Skalak & Yarymovych (1962) and is superior to
their perturbation results. The internal resonance between the parametrically-
excited dominant mode and a higher mode is also discussed.

“Evolution Equation

We consider the one-half subharmonic resonant motion of an ideal,
incompressible fluid in a two-dimensional rectangular tank forced to oscillate
vertically. The length scales are normalized by half-width of the tank, and
time is scaled by the frequency of the resonant waves W=Wo/2, where Wo is the
frequency of excitation. A coordiiite system fixed with the tank is chosen
with the origin and x-axis in the undisturbed free surface and z is positive
upwards. The kinematic and dynamic boundary conditions on the free surface are

5” + 5% ag —é on z=€N(x,t) (la)

and

2 2
-g-f + 5 [(-a-t) + (Qé) ] + 4[N%4 + €cos(2t)]q = 0, on z=ef(x,t)  (1b)
where €{<1 is the nondimensional amplitude of the excitation, p=([7tanh(%h)]~ -1,
N=l/wg; and ﬂ=[(fg/L)tanh(1h)]1/2 is the dimensional linear natural frequency
of the first (symmetric) standing wave in the tank. As a measure of tuning, we
write N=1/2+\€, where A=0(1) is the detuning parameter.

For the multiple-scale analysis, the slow-time scale T=€t is introduced.
The free-surface boundary conditions (1) are expanded in Taylor series about

2=0, and ¢ and 9 are written in the perturbation series:
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We proceed, in a manner similar to Ockendon & Ockendon, through 0(61/2).
Suppressing secularity at this third order, we obtain the evolution equation
governing the complex amplitude A(7) of the resonant response:

b %% + 24pMA - 4a" - raja® =0 , (3)

where I'Z(6-54242+16p%x4-9u6x6)/(644). If a weak, linear damping, a, is
present in the dynamic system, the evolution equation (3) becomes simply:

b %% +aA+ 20p0A - 4A" - aTaja)2 =0, (4)

where a=6/€, and § is the ratio of the actual to the critical damping of the
free oscillation of the resonant mode. .

The phase-plane analysis of (3) & (4) has been considered by Miles
(1984). The phase-plane trajectories can be classified into three different
types for pA<0.5, pA>0.5 and |pA|<0.5. For example, for h=® and pA=1, the
undamped and damped (@=0.5) phase-plane solutions for A(T)EC(T)+iD(T), where
C,D are real, are shown in Figures 1 (a) and (b) respectively.

Solution of the Evolution Equation

Periodic solutions of the undamped evolution equation (3) can be obtained
analytically. Representing the complex amplitude A(T) as A(T)Sa(cos7+isiny),
where a and 7 are real functions of 7, (3) can be rewritten as:

/] %g = - 22U\ + Fa2 + cos 27 , (5a)
/] %% = a sin 279 . (5b)

Eliminating 7 from (5) and upon integration we obtain

2a%(cos 29 - 2pA) + Ta® = E , (6)

where E is an integration constant. Equations (5b) and (6) can be further
combined to give:

B2 _u (1. e(eTaty/2a?% 312, )
which yields:
r=ab j daz
2 | &% - (Ef2+2pral-Tab12)2H 2 (8)

Thus the slow time T is expressed as an elliptic integral of the square of the
amplitude a. At any specified 7, a2 is given in terms of an elliptic function
of T, and the phase angle 7 can be obtained from (6).

The period of the modulation, T, can be expressed explicitly:

T = gu K(k2)/T, (9)

where K(k2) is the complete elliptic integral of the first kind, and k, g are
constants which depend on the specific phase-plane trajectories.
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Steady Response
For steady (harmonic) response, the response amplitude z, is defined as
the maximum vertical distance between the trough and the crest of the free

surface, so that z, is given by twice the amplitude of A at the critical
points which can be calculated directly from (3):

STLTIT -1/2 stable response
= &
% 2 1(zph & 1IT for pX > 1/2 unstable response.
For deep water, I'=x/8, and the present preditions for z, are compared to the
third-order perturbation results and experimental data of Skalak & Yarymovych
in Figure 2, where 0=w/fl. The comparison between our results and measurements
is remarkably good and is better than that of the perturbation theory.

Internal Resonance :

In perturbation analysis of weakly-nonlinear standing waves, an unique
solution does not exist at some critical values of the fluid depth for which
the natural frequency of a higher mode is an integral multiple of the
fundamental frequency. Near these critical depths, internal resonance occurs

between the parametrically-excited dominant mode and a higher mode. For a
© eircular basin, Miles (1984) analysed the two-to-one (i.e., 028201) internal
resonance between the parametrically-resonant first antisymmetric mode and the
first axisymmetric mode.

Unlike the resonant waves in a circular tank, the first possible two-to-
one internal resonance in a two-dimensional rectangular basin is between the
first symmetric and the third symmetric or antisymmetric modes. We define the
detuning parameter for the qth internally-resonant mode:

d=-14+xe, (10)
R q

where fl, is the dimensional linear natural frequency of the qth mode, and
consider, for simplicity, only perfectly-tuned resonance. Following a similar
procedure as before, we obtain the equations governing the evolution of the
complex amplitudes of the dominant (first) mode A(7) and that of the qth mode
Ag(T):

q

* *
b %ﬁ + 2440A - 1" - 1Ta%a” - iAAiX =0, (11a)
and
2 B, 8ip N A - 4T A%A" - 1A A%L =0
Rq ar Bt aq 9949 q q ’ (11b)

where pg=[qf tanh(qrh)]-! and F,E,rq,ﬂq are functions of q and h. Thus, for
the two-dimensional rectangular tank, the nonlinear coupling interaction
between two internal resonant modes are cubic, rather than quadratic as in the
case of the circular basin analysed by Miles.
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Figure 1. Phase-plane solution of the (a) undamped, and (b) damped (@=.5) case
for h=0 and pA=1.
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Figure 2. Comparisons between the present theory ( ), and the

third-order perturbation results (—— —— ——) and experimental measurements
(o) of Skalak & Yarymovych (1962), for the harmonic response as a function of
the response frequency o=w/fl.

- 166 -




Evans: What connection does your work have with the recent work of Bridges in JFM on sloshing
in rectangular tanks?

Tsai & Yue: The evolution equations in the cross-waves problem for the internal resonance
between longitudinal forced waves and transverse cross-waves are similar to the equations in Bridges’
paper. However we have a forcing term in the equation of longitudinal waves and we are not sure
if it has the same property as Bridges’ problem. For the internal resonance in a vertically heaving
tank, the evolution equation has an A* term which comes from the parametric resonance. We are
presently studying the dynamic properties of these evolution equations.
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