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The numerical solution of linearized formulations of the wave resistance problem by a distribution
of panels over the ship hull and the free surface, using the Rankine source 1/r as the Green
function, has in recent years enjoyed increased popularity. The fundamental numerical properties
of the free-surface discretization are systematically studied in three dimensions. In particular the
a) consistency, b) order, c) numerical dissipation and dispersion, d) stability, e) enforcement of
the radiation condition and f) linear-system diagonal dominance are considered for high- and low-
order free-surface discretizations, in connection with the source distribution method as well as its
transpose formulation obtained from the direct application of Green’s theorem.

As is customary in analogous studies in computational fluid dynamics, the numerical analysis is
considered of a simple relevant flow which often accepts a closed-form solution. Here we select the
wave flow generated by a submerged Havelock source. An integral equation is first derived in the
continuous problem for the source strength or velocity potential distributions on the free surface.
Its numerical approximation is then obtained by discretizing a finite part of the free surface with
rectangular panels, combined with a polynomial variation for the unknown function over each panel,
a finite-difference scheme to approximate the convective terms in the free-surface condition and an
appropriate enforcement of the radiation condition. The analysis of the numerical properties of
such free-surface discretizations is illustrated for a low-order scheme and in connection with the
integral equation for the velocity potential. For the two-dimensional submerged source, a study of
these properties has been carried out by Piers (1983).

Consider the three-dimensional potential flow due a point Rankine source submerged at a distance

d below the free surface, translating in the positive z—direction with velocity U.- The -velocity - ---- -

potential is subject to the Neumann-Kelvin condition on the mean position of the free surface, and
via an application of Green’s theorem it can be shown to satisfy the following integral equation on
the z = O plane
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This integral equation is of convolution type and accepts a closed form solution which is the Havelock
wave source potential. Taking the double (u,v) Fourier transform of (1) with respect to the (z,y)
coordinates, it follows that
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where v = g/U? and ¢ is a small positive constant, known as the Rayleigh visocity, which ensures
that the waves associated with the disturbance obtamed by the Fourier inversion of (2) appear
downstream. This elegant device is partlcularly effective with Fourier analysls In what follows, it
will be shown that one way of introducing the proper “Rayleigh viscosity” in the numerical solutlon

of (1) is to select an upstream difference scheme for the approximation of the second ¢—derivative
of the velocity potential .

Consider the numerical solution of equation (1) by discretizing the z = 0 plane and the unknown
velocity potential, using:

e Rectangular panels with sides parallel to the z— and y—axes of lengths h, and h, respectively
e A piecewise constant variation of ¢ and F over the surface of each panel

e The three-node upstream difference formula relating ¢.. to the local and two upstream values
of p.

e The panel centroids as the collocation points.

Employing this discretization in (1), assuming that the extent of the free-surface discretization is
infinite and taking its discrete Fourier transform, it follows that
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where ¢ is the discrete Fourier transform of the solution velocity potential. The “proximity” of
the discrete to the continuous solution hinges upon the proximity of P to F and of W to W. More
intimate, however, is the relation between the functions W, W, since it is the location of the root(s)
of W that is primarily responsible for the waves represented by the numerical solution. Most items in
the ensuing discussion, except for the radiation condition and the linear system diagonal dominance,

are concerned with interior properties of the free-surface discretization therefore justifying the
assumption that the extent of the free-surface grid is infinite.

We are now in the position to study the basic properties of the adopted discretization:

a) Consistency: The discretization of the continuous problem is consistent if the functions W
tend to their continuous counterparts F,W in the limit as h.,h, tend to zero, uniformly in

u,v. For the model numerical scheme considered here, it is easily confirmed that W — W by
comparing equations (3) and (5). This can be also shown to hold for the function F.

b) Order: The order of the discretization is determined by the slowest of the two rates at which
W approach F,W respectively. Expressing the order of their differences in terms of h7*,hy
in the limit as h,,h, — 0 and uniformly in u,v, the minimum of the two mtegers m, n defines
the order of the discretization. To ensure consistency, it is necessary that this minimum integer

is positive.
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c) Numerical damping and dispersion: The order of a given discretization is a global property

d)

which, unlike the informal presentation in b), is rigorously defined as the integrated difference in
some norm between the numerical and continuous solutions. Of particular interest in the present
wave flow is the pointwise comparison of the numerical and continuous wave disturbances. Two
characteristic measures of their difference are the damping and dispersion introduced by the
discretization. They can be quantified by comparing the relative location of the roots of W
and W. Without loss of generality in the illustration of the principal idea, we set v = 0 in (3)
and (5) or else we consider the corresponding two-dimensional flow. The root of W occurs at

|u| = v, while the corresponding principal root of W can be obtained from (5) for small A in
the form

b= (1 +ih, — %hﬁ) +0(h). (6)

- Its displacement in the positive imaginary half-plane by a distance svh, indicates that the

numerical solution introduced numerical damping of O(h, ). Its displacement in the direction of
the real axis by —4lvh] indicates that the corresponding numerical dispersion is of O(h2). In
practice these orders tax so severly the smallness of h,, or else the maximum number of panels
necessary for acceptable accuracy, that the derivation of a higher-order scheme is necessary.

Numerical stability: The principal root of W is responsible for the generation of the physical
wave disturbance. Other spurious roots, real or complex, are the creation of the numerical
approximation and their location determines its stability properties. Real spurious roots will
contaminate the physical wave distrurbance generated by the principal root with unphysical
oscillations. On the one-dimensional grid with panel size h, (v = O case), the most rapidly
oscillatory disturbance has a minimum wavelength 2k, , or a maximum wavenumber u* = x /h,.
Spurious roots with small or zero imaginary part and modulus less than u*, will generate a visible
oscillatory error. If their modulus is greater than u*, they still generate an oscillatory error,
which is however not visible as a disturbance with sign alternating at the expected frequency
on our grid, since its wavelength is smaller than 2h,. This error is nevertheless present, its
amplitude is proportional to the modulus of the residue of the complex function (4) at the
spurious root and its manifestation is known under the name aliasing. Spurious roots with
substantial imaginary parts are harmless, since the oscillatory error they create is exponentially
small. In summary, a given discretization will be called unstable when spurious roots are located
near the real u—axis, with more severe errors usually occuring when their modulus is less than

-

u.

Radiation condition: The principal root of W defined by (6) is shifted in the positive imaginary
u—plane. Recalling the discussion on the continuous problem following equation (3), we may
conclude that this ensures that the disturbance generated by this root represents no waves
upstream, thus satisfying the radiation condition. Numerical waves may still be propagating
upstream if a spurious root is real. Therefore, the radiation condition is strictly enforced when
the imaginary part of all spurious roots remains finite in the limit A, — 0. The proper shift
of the principal root in the complex plane is ensured by the sign of the exponent in e=*h=*
in (5) which is generated by the Fourier transform of the upstream difference operator. Had
a downstream difference operator been selected, this factor would be equal to e™*+*, and by
virtue of (6) would cause the waves associated with the principal disturbance to propagate
upstream. For a symmetric difference operator, the same factor takes the value cos(h, u) which
produces a real W, therefore not permitting the enforcement of the radiation condition via the
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finite-difference scheme. On a free-surface grid of finite extent, the radiation condition may
however be enforced by proper conditions imposed at its boundaries. Numerical examples will
be presented which demonstrate the feasibility and performance of this alternative approach.
An advantage of centered-difference schemes is that they are responsible for a smaller numerical
damping than upstream difference schemes of the same order. This can be seen by substituting
the Taylor series expansions of e~***% and cos(h,u) for small h, in (5) and evaluating their
effect in the complex displacement of the root £ from its continuous value v.

f) Linear System Diagonal Dominance: In practice it is very desirable to be able to develop an
iterative scheme for the solution of the linear system obtained from the discretization of equation
(1). The numerical treatment of wave flows around realistic ship forms typically requires the use
of large numbers of panels over the ship hull and free surface, especially at low Froude numbers.
Therefore, iterative solutions lead to substantial computational gains relative to direct Gauss
reduction. Our understanding of the spectral properties of the integro-differential equation (1)
enforced over a finite domain of the free surface is limited. We believe that the finite extent of
the free-surface grid, the conditions imposed at its boundary and, the type of iterative scheme
used are critical factors in the determination of its rate of convergence. In spite of the pessimistic
picture painted by Forbes (1984) concerning the convergence of iterative schemes for equations
of this type, an accelerated Gauss-Sidel scheme was found to converge for low and moderate,
but not for high Froude numbers. Research on this topic is ongoing.

Numerical experiments demonstarting the above numerical analysis will be presented for the solu-
tion of the flow generated by the Havelock source. Attention will be finally placed on the design
and performance of a high-order scheme using a quadratic-spline approximation of the velocity po-
tential on the free surface in both the z— and y—directions, which was found to be both accurate

and economical for the numerical solution of elementary wave disturbances as well as realistic flows
past ship hulls.
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