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Dock problems are classical, but still attract attention. Thus, Miles
(1987) has recently considered the forced harmonic oscillations of a rigid
circular plate in the free surface of deep water. Numerically, such problems are
relatively straightforward, for they can always be reduced to a Fredholm integral
equation of the second kind over the wetted surface of the dock, D (see, e.g.

MacCamy, 1961):

p(P) + K [ p(@)6(p,a)dsq = | V(Q)IG(p,a)dsq.
D D

Here, p and q are points on D, ¢ 1{is the velocity potential, dyp/0On = V on
D, K=w?/g, w 1is the radian frequency, and G is the usual fundamental

solution.

The situation is quite different if the dock is submerged. Thus, for
an oscillating immersed thin plate, the potential must have a representation as

o® = | lp(@] G5 oP.)isq 1
D

for P in the water, i.e. as a distribution of normal dipoles over (one‘side of)
the thin plate, with density equal to [p], the discontinuity in ¢ across the
plate. (Here, we have assumed that the plate is infinitesimally thin. However,
the representation (1) is apprdpriate for floating bodies with a finiteiy-thin
component .) Application of the boundary condition gives

S [ le@1 & G(p.ddsq = V), p on D, 2)
P p
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which is an equation for [e].

One would like to take the operator 8/8np under the integral in (2), but this
leads to a non-integrable kernel. To avoid this, many authors have advocated

various regularizations. Alternatively, it can be proved that (2) can be rewritten

as
32 |
%D[sam)] Bnggn; C(P@)dsq = V(P), p on D, 3

where the integral has to be interpreted as a Hadamard finite-part integral.

Equation (3) is a hypersingular integral equation.

As an example, consider a submerged smooth plate in two dimensions. Then, (3)

can be written as

1

i[so(t)] {(x—fa-z- + K(x,t)}dt -v(x), -1<x<1,

where v(x) 1is known, K(x,t) 1is a weakly-singular kernel and [p(t)] 1is to

be found. The finite-part integral is defined by

1 X-€ 1
f(t) F(t) f(t) f(x)
dt = Lim — dt + dt - 2 —<
Heor it weor e mena e 27
which compares with
1 X-€ 1
f IO g - Lim | FO g + [ K8 4]
1yx-t >0 & 1p Xt et

for the Cauchy principal-value integral of f.

Computational experience with hypersingular integral equations is scarce and
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and scattered, but accumulating. Various methods for their solution will be

described and compared.
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Newman: The questions which have been raised regarding the convergence of piecewise-constant
unknowns and appropriate numerical algorithms are largely answered in the aerodynamics liter-
ature. Cosine-spacing is very useful, with the collocation points at mid-points in the “angular”
coordinate. Extensive discussion can be found in a paper by Lan (J. Aircraft, 1974).

Martin: It is well known that cosine spacing is appropriate for integral equations with a Cauchy
principal value (CPV) kernel. Since the finite-part integral (defined in the abstract) is (—d/dz) of
the CPV integral, it is not surprising that cosine spacing is still appropriate. Expansions in terms
of Chebyshev polynomials can also be used (Kaya & Erdogan, Quart. Appl. Math.1987). However,
the real problems are in three dimensions!

Xu: Your work on the integral equation of the 1st kind is interesting. As we know, this type of
integral equation often occurs in the analysis of a lifting body. In the two-dimensional unsteady
case, or the three-dimensional case, the integral domain always includes the wake region behind
the body. How would you extend your theorems to account for these cases?

Martin: The formula

o [l e-Clp s, = f (6ol g G pra)de,

is valid at any point p on I' at which the jump [¢] is at least continuously differentiable ([¢] in
CY=(T) : [¢] has a tangential derivative which is itself Hélder continuous). In your problem, I is
the lifting body plus wake. (If p is at either end of T, then the finite-part integral must be replaced
by a different finite-part integral.) The formula above is also valid in 3-D. It is also assumed that
I' is smooth (twice differentiable).
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