by

## P.A. Martin, Department of Mathematics, University of Manchester, Manchester, M13 9PL. England.

Dock problems are classical, but still attract attention. Thus, Miles (1987) has recently considered the forced harmonic oscillations of a rigid circular plate in the free surface of deep water. Numerically, such problems are relatively straightforward, for they can always be reduced to a Fredholm integral equation of the second kind over the wetted surface of the dock, D (see, e.g. MacCamy, 1961):

$$\varphi(p) + K \int_{D} \varphi(q)G(p,q)ds_{q} - \int_{D} V(q)G(p,q)ds_{q}.$$

Here, p and q are points on D,  $\varphi$  is the velocity potential,  $\partial \varphi/\partial n = V$  on D,  $K = \omega^2/g$ ,  $\omega$  is the radian frequency, and G is the usual fundamental solution.

The situation is quite different if the dock is submerged. Thus, for an oscillating immersed thin plate, the potential must have a representation as

$$\varphi(P) = \int_{\mathbf{p}} [\varphi(q)] \frac{\partial}{\partial \mathbf{n}_{\mathbf{q}}} G(P, q) ds_{\mathbf{q}}$$
 (1)

for P in the water, i.e. as a distribution of normal dipoles over (one side of) the thin plate, with density equal to  $[\varphi]$ , the discontinuity in  $\varphi$  across the plate. (Here, we have assumed that the plate is infinitesimally thin. However, the representation (1) is appropriate for floating bodies with a finitely-thin component.) Application of the boundary condition gives

$$\frac{\partial}{\partial n_p} \int_{D} [\varphi(q)] \frac{\partial}{\partial n_q} G(p,q) ds_q = V(p), \quad p \quad \text{on} \quad D, \tag{2}$$

which is an equation for  $[\varphi]$ .

One would like to take the operator  $\partial/\partial n_p$  under the integral in (2), but this leads to a non-integrable kernel. To avoid this, many authors have advocated various regularizations. Alternatively, it can be proved that (2) can be rewritten as

$$\oint_{D} [\varphi(q)] \frac{\partial^{2}}{\partial n_{p} \partial n_{q}} G(p,q) ds_{q} = V(p), \quad p \quad \text{on} \quad D,$$
(3)

where the integral has to be interpreted as a <u>Hadamard finite-part integral</u>.

Equation (3) is a <u>hypersingular integral equation</u>.

As an example, consider a submerged smooth plate in two dimensions. Then, (3) can be written as

$$\oint_{-1}^{1} [\varphi(t)] \left\{ \frac{1}{(x-t)^{2}} + K(x,t) \right\} dt = v(x), \quad -1 < x < 1,$$

where v(x) is known, K(x,t) is a weakly-singular kernel and  $[\varphi(t)]$  is to be found. The finite-part integral is defined by

$$\oint_{-1}^{1} \frac{f(t)}{(x-t)^{2}} dt = \lim_{\epsilon \to 0} \left\{ \int_{-1}^{x-\epsilon} \frac{f(t)}{(x-t)^{2}} dt + \int_{x+\epsilon}^{1} \frac{f(t)}{(x-t)^{2}} dt - 2 \frac{f(x)}{\epsilon} \right\}$$

which compares with

$$\int_{-1}^{1} \frac{f(t)}{x-t} dt = \lim_{\epsilon \to 0} \left\{ \int_{-1}^{x-\epsilon} \frac{f(t)}{x-t} dt + \int_{x+\epsilon}^{1} \frac{f(t)}{x-t} dt \right\}$$

for the Cauchy principal-value integral of f.

Computational experience with hypersingular integral equations is scarce and

and scattered, but accumulating. Various methods for their solution will be described and compared.

## References

MacCamy, R.C. On the scattering of water waves by a circular disk. Arch. Rat.

Mech. Anal. 8 (1961) 120-138.

Miles, J.W. On surface-wave forcing by a circular disk. J. Fluid Mech. 175 (1987) 97-108.

Newman: The questions which have been raised regarding the convergence of piecewise-constant unknowns and appropriate numerical algorithms are largely answered in the aerodynamics literature. Cosine-spacing is very useful, with the collocation points at mid-points in the "angular" coordinate. Extensive discussion can be found in a paper by Lan (J. Aircraft, 1974).

Martin: It is well known that cosine spacing is appropriate for integral equations with a Cauchy principal value (CPV) kernel. Since the finite-part integral (defined in the abstract) is (-d/dx) of the CPV integral, it is not surprising that cosine spacing is still appropriate. Expansions in terms of Chebyshev polynomials can also be used (Kaya & Erdogan, Quart. Appl. Math. 1987). However, the real problems are in three dimensions!

Xu: Your work on the integral equation of the 1st kind is interesting. As we know, this type of integral equation often occurs in the analysis of a lifting body. In the two-dimensional unsteady case, or the three-dimensional case, the integral domain always includes the wake region behind the body. How would you extend your theorems to account for these cases?

Martin: The formula

$$\frac{\partial}{\partial n_p} \int_{\Gamma} [\phi(q)] \frac{\partial}{\partial n_q} G(p,q) ds_q = \oint_{\Gamma} [\phi(q)] \frac{\partial^2}{\partial n_q \partial n_q} G(p,q) ds_q$$

is valid at any point p on  $\Gamma$  at which the jump  $[\phi]$  is at least continuously differentiable  $([\phi]$  in  $C^{1,\alpha}(\Gamma):[\phi]$  has a tangential derivative which is itself Hölder continuous). In your problem,  $\Gamma$  is the lifting body plus wake. (If p is at either end of  $\Gamma$ , then the finite-part integral must be replaced by a different finite-part integral.) The formula above is also valid in 3-D. It is also assumed that  $\Gamma$  is smooth (twice differentiable).