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Boundary-integral formulations of wave-body interactions for surface-piercing bodies
fail to produce accurate solutions near the irregular frequencies. Irregular frequen-
cies have no physical meaning but are associated with the selection of the specific
boundary-integral equation, and in no way reflect an irregularity in the solution of the
original boundary-value problem. The problems associated with the irregular frequen-
cies reduce, to some extent, the reliability of boundary-integral formulations. Several
methods have been proposed for the removal of the effects of irregular frequencies.
Ohmatsu(1975) suggested the addition of a rigid lid on the body waterplane area to
suppress the interior resonance. This method is effective in two and three dimensions at
the cost of using additional panels on the body waterplane area. Ogilvie and Shin(1977)
removed the irregular frequencies in two dimensions by placing a point source on the
interior free surface. The effectiveness of this method has not yet been demonstrated
for three-dimensional bodies of arbitrary geometry. In an acoustic scattering problem,
Burton and Miller(1971) obtained a modified integral equation by the linear superpo-
sition of the classical Green integral equation and its normal derivative with respect
to the field point. This modified integral equation has no irregular frequencies and
is applied to three-dimensional surface-wave body interactions. It turns out that the
proper selection of the coupling constant in this linear combination is essential for the
successful numerical implementation of the method. This method utilizes the same
number of panels and unknowns as in Green equation and requires in addition the
evaluation of the second spatial derivatives of the wave source potential.

Using Green’s identity, the velocity potential on the body boundary can be shown to
satisfy the equation
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which is Fredholm of the second kind. The normal derivative of the Green equation on
the body boundary is given by
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which is an integral equation of the first kind with poorer conditioning than the second-
kind equation.

Each equation independently solves the radiation and diffraction boundary value prob-
lems. The irregular frequencies of the Green equation coincide with the eigenfrequencies
of the interior Dirichlet problem, and those of its normal derivative with the eigen-
frequencies of the interior Neumann problem. Their linear combination (3) has not
irregular frequencies if the imaginary part of the coupling constant « is not zero.
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In the numerical solution one can directly descretize equation (3) or use the regularized
form obtained by a premultiplication of these equation by a frequency independent
operator, as suggested by Burton and Miller (1971). With this operation the unbounded
operator involving the double normal derivative of the Green function can be rendered
bounded. In light of the substantial increase in the computational effort associated
with such operation [O(n®)], a direct numerical solution is here attempted. The body
wetted surface is fitted with plane quadrilaterals, the velocity potential is assumed
piecewise constant over the surface of each panel, and the integral equation is solved
by collocation at the panel centroids. Due to the addition of the first kind integral
equation, the conditioning of the modified integral equation worsens with increasing
magnitude of the coupling constant a. On the other hand, for a small magnitude of
the effect of the irregular frequencies of the Green equation may not be removed. The
selection of the “optimal” value for the coupling constant o has been carried out by
minimizing the condition number of the modified equation. The mathematical hbrary
LINPACK is used to determine the condition number.

Numerical computation is performed for a sphere and a truncated vertical cylinder,
and the results support following conclusions. A positive purely imaginary coupling
constant o generates the best results. An optimal a exists, and is determined by
minimizing the condition number of the modified integral equation at the first irregular
frequency of the Green equation. The value of the optimal « is found to depend on
the shape of the body geometry, but a value of 0.2 is found to generate satisfactory
results for the bodies tested. Figures 1 and 2 show the performance of the method
in evaluating hydrodynamic forces. Figure 3 shows the removal of common irregular
frequencies of equations (1) and (2) when they are coalescent.
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Hung: Can you tell us something about the behavior of condition number in a multiple body
situation?

Lee: Our experience with the TLP shows that conditioning of the discrete problem of the TLP is
better than that of the single cylinder near the irregular frequencies [the irregular frequencies of the
TLP are close to those of the cylinder, see Korsmeyer, et al (1988).] We think that the influence of
the pontoon makes the condition better; but for multiple bodies without connections, it is expected
that the conditioning will be similar to that of a single component body near irregular frequencies.

Papanikolaou: In your scheme you need an “optimal” value of a in order to minimize the condition
number of the modified integral equation. How would you determine « for a body of arbitrary shape
and what is the effort involved?

Lee: At this point, we do not have a simple method to predict the optimal « for bodies of arbitrary
shape. A method would be to find the location of the first irregular frequency by solving the interior
eigenvalue problem, then perform a numerical experiment to find the optimal a at that irregular
frequency. However, a = 0.2 is found to be a generally good estimation for a wide class of bodies,
including cylinders with draft/radius ratios of 0.5 — 3 and spheroids with beam/length ratios of
1/8 > 1.

Kleinman: Did you observe a frequency dependence of the optimal coupling coefficient (for a fixed
body) similar to that obtained by Kress, et al in the acoustic case?

Lee: The optimal coupling coefficient is dependent on the frequency, but determination of the
optimal a at each frequency requires greater computational effort than solving the system. Kress
derived a formula for optimal a in the acoustic Dirichlet problem for a sphere, (where there is no
double normal derivative). However, it is difficult to employ his derivation in our problem, so we
suggest and justify a simple optimal a.

Beck: Do you have any indication as to the extra computational effort which is required to solve
your modified integral equation as compared with the normal integral equation when one is not
near an irregular frequency?

Lee: The additional numerical effort in using the modified integral equation is the computation
of the double normal derivative and the normal derivative with respect to the field point of the
Green function. The additional computation can be broken down into two parts: the first part is
frequency independent and requires a large additional effort (200%), but this needs to be performed
only once; the second part is frequency dependent and requires a small additional effort (20% for
finite depth and much less for infinite depth). The average additional effort is 20 to 25% when
computations are performed for 20 frequencies in infinite depth.
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