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In the past decade, several investigators have reported solutions to first-order transient
problems, for instance: Yeung (1982), Newman (1985), Beck and Liapis (1987), and
Korsmeyer and Sclavounos (1988). Primarily, their results have consisted of integrated
quantities, such as the impulse response function or the force on a freely floating body.
In these cases, knowledge of the potential on the body alone is required, and integration
obscures any local errors which may be present. If we wish to make other use of these
first-order solutions, such as for the quadratic quantities in the right-hand sides of
second-order problems, detailed knowledge of the flow field may be necessary.

Since boundary-integral equation formulations and panel methods are the dominant
choice for solution of these problems, we investigate the ability of the discretized Green
formulation to evaluate the potential, and its spatial and temporal derivatives, in the
semi-infinite fluid field surrounding a general 3-D body. As a model problem, this body
is a right-circular cylinder in the heave mode; but to retain generality, the panel method
is not specialized to this case. A Fredholm-Volterra integral equation may be derived
for this problem, which when discretized in a panel method, and normalized by setting
the acceleration due to gravity, fluid density and a representative body length equal to
one, appears as (Korsmeyer, 1988):

N
2m’y +Z¢“’ / dfGSf’J (% €) Z quf-,‘,l. f/ d€ G )(% & tar—m)

3
z uMz
IIMZ ||
2
o~
3
—
o
T oa
~
Q
3
8
o
(o
ES
3

Z: B (1 // dE GO (z:6)

=1,2..N M=0,1..M;,
(1)

where B! (t) is the right-hand side of the first-order body boundary condition, S; is
the surface of the 7** panel, the prime on the summation in time indicates a weight of
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one-half is applied when m = 0, and the Green functions G(°) and G'F) are defined in
Newman (1985). As is well understood in potential theory, equation (1) may first be
solved for the potential on the body by letting £ and § both be on the body surface, and
subsequently may be used to compute the potential anywhere in the fluid domain by
letting Z be a field point in that domain, with the factor 27 changed to 47. In addition,
(1) may be used to compute temporal and spatial derivatives of the potential at field
points, by first taking a partial derivative with respect to the field point variables.

We would like to evaluate the potential and its spatial and temporal derivatives in the
fluid field by another method, in order to evaluate the accuracy of the panel method
by comparison. Usually a closed-form solution is sought for this purpose, but in the
case of the transient radiation problem there is none available. However we can make
beneficial use of a formulation which is often employed for matching nonlinear inner
solutions to first-order outer solutions. This matching takes place on a vertical, right-
circular cylinder which encloses the nonlinear portion of the solution and is of semi-
infinite vertical extent. Exterior to the cylinder is a first-order potential which may
be expressed in terms of the radial fluid velocity through the cylinder and a Green
function. For the present application, the interior potential ts the first-order solution
and the surface over which the radial fluid velocity must be evaluated is an infinitely
deep continuation of the body itself. We can express the first-order, axisymmetric
potential exterior to the infinite cylinder (of radius equal to 1) by:
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where 2’ is on the infinite cylinder, (r,2) is a field point, and the Green function,
D = D© 4 D(F) is an axisymmetric function, with Rankine portion:

DO = 1/ dk £ L(k,r) [eH1x=1 = e ¥, (3)
T Jo k
and free-surface wave portion:
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in which L(k,r) is a rational function of ordinary Bessel functions:

Jo (kr)Ys (k) — J (k) Yo (kr) (5)
JZ (k) + Y7 (k)

L(k,r) =

In the application of (1) (and its partial derivatives) to find quantities in the fluid
field, particularly on the free surface, several numerical difficulties arise. We find that
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very close to the free-surface-body intersection, the potential or its derivatives do not
converge, and in fact ‘blow-up’, in spite of the fact that there is no singularity at this
intersection for this problem. Also, near the body there are large-amplitude short waves
that may be resolved, but only by great computational effort. These two problems
make the evaluation of the free-surface integral in the second-order problem difficult
by a panel method, and we suspect that they are a result of the evaluation of field
quantities close to the edge of a constant strength panel.

Note that in (2), ¢{*) vanishes on the portion of the infinite cylinder which is the body
itself, so that for field points on the free surface, |z £ 2| is never smaller than the
extent of the body draft. The effect is that even though the panel method may be
employed to find ¢$l) (1,2,t) on the infinite cylinder, the constant-strength panels near
the free surface, in a Green formulation like (1), play no direct role in the evaluation
of quantities on the free surface in (2). A further benefit of this formulation is that
the behavior of the first-order potential and its derivatives is more apparent than it is
in (1). In equation (2) we may observe that the non-zero limit of |2 £ 2’| ensures that
very short waves are indeed damped exponentially with wave number, so that at large
time, very close to the body, we can expect no large-amplitude, rapid oscillation of the
free surface.

The implementation of (2) requires that (1) be used to find ¢(*)(Z,t) on the body, and

(1) (1, 2,t) on a portion of the infinite cylinder. ARy (1, 2,1) is required from the corner
of the body to a truncation point at sufficient depth to allow accurate evaluation of free-
surface quantities. Computational effort may be reduced by matching the computed
velocity at that point, to that due to a dipole located at the origin. Accurate evaluation
of ¢{*)(r, 2,t) close to the submerged body corner cannot be expected, because like the
free-surface-body intersection, this requires field points close to the edge of a panel.
However, empirical evidence suggests that depth improves this situation, and more
importantly depth allows an infinite-fluid analytical approximation to the locally two-
dimensional, corner flow.

Comparison of the results from the two methods shows that the apparently singular
behavior of the potential and its derivatives at the free-surface-body intersection is an
artifact of the panel method solution to the Green formulation. The results also show
that the large-amplitude short waves in the solution of (1) are due to the discrete form
of the Green formulation. As discussed above, (2) does not predict this large-amplitude
behavior. Rather, we see that the initial impulsive disturbance of the free surface, which
contains all wave lengths, disperses with increasing time and wave amplitude is atten-
uated exponentially with wave number. Away from the free-surface-body intersection
the results of both methods are in excellent agreement.
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