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Introduction

The second-order wave effects on compliant offshore platforms and moored
ocean vessels have been a topic of increasing interest and extensive studies
in the past decade. Because of the complexity of the second-order boundary-
value problem involving inhomogeneous free-surface conditions, a number of
approaches which either neglect, approximate or otherwise avoid the direct
calculation of the second-order potential have been proposed. Recently, we
developed a complete second-order diffraction-radiation method for the
calculation of sum and difference frequency wave forces on axisymmetric bodies
and their resultant motions in the presence of bichromatic waves. The
nonlinear second-order potential is obtained explicitly so that, in addition
to forces and moments, local quantities such as second-order pressures,
velocities, and surface elevations are also available. We present results for
the second-order wave force quadratic transfer functions in bichromatic seas
for a floating hemisphere and a conical island. The validity of several
existing approximations are discussed.

Problem Formulation
Assuming potential flow and weak nonlinearities, we write the following
perturbation expansion and decomposition for the total velocity potential §:
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At first order, the diffraction potential represents the scattered waves due
to the presence of the fixed body, and the radiation potential the radiated
waves due to first-order body motions. At second order, ®p(2) represents the
second-order diffraction potential for the body undergoing first-order
motions, while QR(Z) is the second-order radiation potential due to second-
order motions in the absence of ambient waves. In the presence of two
incident plane waves of different frequencies, the linear and second-order
potentials can be expressed as follows:
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where Ww*=w +w1 and the sum and difference frequency problems can be treated
seperately. The boundary-value problem for the first-order body disturbance
potential, ¢§p, which combines the diffraction and radiation potentials is

given by:
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where 5(1) and a(l) are the complex amplitudes of the first-order

translational and rotational motions. The boundary-value problem for the sum
and difference frequency second-order diffraction potential is given by:
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where k' is the wavenumber corresponding to the frequency w'. The
inhomogeneous free-surface and body-boundary forcing terms, Q and B, are
composed of quadratic products of the first-order potentials or motions, and
can be obtained by using Taylor’s expansion of the exact free-surface and body
boundary conditions with respect to their mean positions. For example, the
sum-frequency free-surface forcing term Q* can be calculated from:
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where qy7 represents the self-quadratic terms of the linear incident wave
potential. The sum and difference frequency second-order radiation
potentials, which is proportional to the second-order motions, satisfy the
boundary value problem:
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For unit amplitude second-order motions, (6) gives the added-mass and
hydrodynamic damping for the sum and difference frequency second-order
equation of motion. In this sense, the analyses for the first and second-order
radiation potentials are identical except for the shift of frequencies, and
most of the interesting nonlinear aspects and complexities are involved in the
second-order diffraction problem.

We solve the second-order diffraction problem directly by applying
Green’s theorem to the sum and difference frequency diffraction potential and

the (linear) wave-source Green function to obtain a Fredholm integral equation
of the second kind:

8

o ds==jjci(si-
n

Sg

where the source strengths on the body and free surface are given by the body
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and free-surface forcing terms respectively. The most important and difficult

step in the solution of (7) is the evaluation of the body and free surface
integrals on the right hand side of (7). For sum-frequency problems, the
free-surface integrand is highly oscillating and slowly-decaying and a direct
truncation in the near field may result in significant errors. The detail
asymptotic analysis and evaluation of this free-surface integral is described
in Kim & Yue (1988). For the difference-frequency problem, the oscillations
and decay of the free-surface integrand is much slower than that of the sum-
frequency problem especially when two incident wave frequences are close. In
this case, the contribution of the free-surface integral is in general small
compared to other second-order contributions. For vertically axisymmetric
bodies, we expand the linear and second-order potentials in terms of Fourier
cosine series and integrate (7) in 8 direction first to obtain successive one
dimensional integral equations for each Fourier mode:
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For the evaluation of the free-surface integral in (8), we seperate the
contribution of the free wave from the original integrand and integrate
analytically outside a truncation boundary where the integrand is local wave
free. As a result, we can shrink the domain of numerical integration and save
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the computing time drastically. The total second-order force on a freely
floating body can be obtained by integrating the pressures on the
instantaneous body surface, as described in Ogilvie(1983).

The total second-order wave exciting force for second-order motions can
be divided into four parts: (i) contributions from the quadratic products of
the linear quantities, (ii) contributions from the second-order incident wave
potential, (iii) contributions from the body-boundary forcing term of the
second-order diffraction potential in (4), and (iv) contributions from the
free-surface forecing term of (4).

Results and Discussion

The sum and difference frequency second-order forces (the complete
quadratic transfer function) on a floating hemisphere and a bottom-seated
conical island in the presence of bichromatic incident waves are calculated by
our boundary-integral equation method using ring sources. For the sum-
frequency springing forces, the contribution of the free-surface integral is
usually dominant over other second-order contributions. As a result, many
approximation methods such as that of Herfjord & Nielsen (1986) or Petrauskas
& Liu (1987), who neglect this contribution may be quite restrictive. For the
difference-frequency or slowly-varying drift forces, however, the contribution
of the free-surface integral is not very important compared to the other
second-order contributions except for the cases where the difference of two
frequences is large or when large nonlinearities are expected for special
geometries such as mild slope conical gravity platforms. Existing
approximation methods for slowly-varying difference-frequency wave forces are
also examined for their validity for different combinations of frequencies and
body geometries.
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Papanikolaou: Accept my compliments for your fine work. I would like further clarification of
the decomposition of the second-order problem.

Kim & Yue: The way in which the second-order problem is decomposed is not unique. Any
decomposition is acceptable as long as the total potential satisfies the original bc?undary value
problem. In our point of view, the present decomposition is consistent with the linear problem

in the sense that ¢£2) and ¢g) yield wave-exciting forces for 2nd-order motions. The form of the
far-field dsymptotic behavior of ¢g) does not change whether we include first-order motion or not.
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