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ABSTRACT
When we analyse the unsteady flow field around a ship advancing
and oscillating on the free surface in the framework of linear theory,

we usually adopt the classical linearized free-surface condition which
takes into account only the contribution of uniform flow:
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where K=w?/g, 1=Uw/g, K,=g/U? (2)
In eq.(2), w denotes the circular frequency of oscillation, U the

forward speed of a ship, and g the acceleration of gravity.

Numerical solutions of radiation problem for a 2-D surface
piercing body satisfying eq.(1) does not satisfy the principle of
energy conservation; the damping coefficient by the pressure integra-
tion over the wetted portion of the body is not equal to the one
obtained from the amplitude of outgoing waves at infinity, and
hydrodynamic forces computed sometimes fluctuate anomalously against
the frequency [1]1[2]. This fault in those solutions 1is certainly
attributed to the singularities of the fluid velocity at intersections
of body and free surfaces; the so-called line integral term. (The term
"line integral" is not appropriate for the 2-D problem, but for
convenience we use here this term.) Ursell [3] discussed this 1line
integral term in the 2-D "Neumann-Kelvin" problem and proved that a
unique solution can be obtained provided the boundedness of the fluid
velocity 1is assumed at the intersection points. This solution is
referred to as the '"least singular" solution. He also showed that the
least singular solution can be constructed either by the multipole
expansion method or by the integral equation method.

With the same line as Ursell's for the steady translation problem,
we gave numerically the '"least singular" solution of the unsteady
problem with forward speed by the multipole expansion method. The
derivation of velocity potential and the numerical scheme based on
this multipole expansion method are briefly described and then the
results of numerical computations are discussed in the first half of
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the present study. As seen in Figure 1, there seems to be no anomalous
fluctuation of hydrodynamic forces against the frequency, but the
satisfaction of the energy conservation principle is not improved.

Zhao & Faltinsen [4] may be the first to have obtained a numerical
solution including the effect of steady perturbation flow on the free
surface condition. They neglected the terms of order U? on the assump-
tion of small forward speed; this makes the wave system at infinity
reduce to only two components with longer different wavelength (other
two wave components with shorter wavelength, which exist if the terms
of O(y?) are not neglected, dlsappear) and thus makes the problem easy
to be solved.

In the present study, we made no assumptions on the order of U
and/or w except that the unsteady potential is of small order of
quantity. Retaining consistently the contribution of steady pertur-
bation potential ¢, which satisfies the rigid-wall free surface
condltlon, we can obtain the modified free surface condition correct
to O(y?) in the following form [4]

- d¢s 3¢ _ 1 (9¢s z_g;az _3_2
Ko ZTBX dx ( ) axz * oy
_ Szggs 1 (4 (90s,2 32% .90 ags 3%2ds 3 _
it dx? o * 21('0l1 (3x ) 3 X Kay) 8x 9x“ 9x 0 (3)
ony =0
Since ¢ becomes -x at infinity, eq.(3) reduces to eq.(1) at a

large distance from the body. In the second half of the present study,
we show through numerical calculations that if the free surface
condition (3) is used in place of the classical free~surface condition
(1), a solution for the radiation problem satisfies the principle of
energy conservation within the allowable numerical error.

Following Zhao & Faltinsen, we utilized the integral equation
method with the fundamental logarithmic singularity as the Green
function. But unlike their numerical scheme, a circular boundary
surrounding the body is chosen as the radiation boundary, on which the
multipole expansions derived in this study are introduced to impose
the radiation condition. The numerical scheme employed is essentially
analogous to the "hybrid" method contrived by Nestegard & Sclavounos
[5] for the zero-speed problem. In this study, we refer to our
numerical calculation method as the "hybrid" method.

An example of the numerical computation, the surge damping
coefficient, 1is shown in Figure 1 for a half-immersed circular
cylinder with Froude number 0.128. The result at zero forward speed is
also given in this figure for comparison. It can be seen from this
figure that the effect of forward speed on the damping coefficient 1is
small. However it should be kept in mind that the effect of forward
speed arises also from the body boundary condition owing to the
interaction between steady and unsteady flow fields, and this effect
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tends to suppress the forward speed effect arising from the free
surface condition. :

The numerical accuracy of the solutions by the present calculation
scheme 1is not always improved as the number of segments on the free
surface increases beyond certain limit. Presumably there might be some
inaccuracy in the numerical differentiation of the potential on the
free surface. We are now investigating further to overcome this
problem and studying the mathematical reason why the principle of
energy conservation is satisfied when the free surface condition (3)
is used in place of the classical free surface condition (1).
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Figure 1 Surge damping coefficient of a half-immersed
circular cylinder ( Fn=0.0, 0.128 )
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Grue: When the discussed solution does not fulfill conservation equations (energy or mass) it tells
us that something is wrong with the solution, not that the energy relation is wrong. The energy
relation is not affected by the free-surface boundary condition close to the body.

Kashiwagi & Ohkusu: The expression for the energy relation is not affected, but the difference
in the free-surface condition near the body is reflected in the Kochin function. As you may know,
there is not such a shortcoming in the submerged-body problem regardless of whether the steady
disturbance is included. In addition, judging from that, the energy relation seems to be improved
by using the modified free-surface condition. It is likely that a problem exists near (or possibly at)
the intersection of the body and the free-surface, especially when the classical free surface condition
is used.

Faltinsen: When you solve the problem with the classical free-surface condition you show results
with three different methods. Could you comment on why you get differences between the meth-
ods in some cases. Is the same boundedness condition used? Do the differences become more
pronounced for variables which are more sensitive to Froude number than the added-mass and
damping?

Kashiwagi & Ohkusu: The results from the integral-equation method are coincident with those
from the multipole-expansion method except for anomalous fluctuations. Although almost the
same results are obtained by the hybrid method, there exist slight differences as you point out.
The former two methods will produce the same least singular solution, but we do not use any
special treatment for the singularity at intersection points in the hybrid methods, which might be a
reason. However as long as we use the integral equation based on Green’s theorem, the solution will
be a least singular solution. In the presentation, we compared the values of the damping coefficient,
but of course we have to compare the diffraction force and the wave drift force, or the pressure
distribution.

Palm: When you use the “classical” boundary conditions you find that the energy relation is not
satisfied. However, why is the energy relation not satisfied when you use the modified (correct)
boundary conditions? ‘

Kashiwagi & Ohkusu: We presume that the energy relation must be satisfied when the free-
surface condition is modified. Judging from the numerical results indicating that the satisfaction
of energy relation is improved as compared to the case of the classical free-surface condition, I
think that the reason why the energy relation is not satisfied as well as we might expect is due to
numerical inaccuracy.

Newman: I do not understand why the flux across the plane y=0 should be zero, so long as it is
an oscillatory quantity with zero time-average.

Kashiwagi & Ohkusu: We explain this as an extension of the steady problem. In the steady
Neumann-Kelvin problem, the flux of water becomes
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where x denotes the steady perturbation potential. 3x/dz at intersection points is not zero. This
fact means that the stream line on the free surface is not continuous to the body surface. This
flow seems strange from the physical point of view. The same kind of argument is possible in the
unsteady problem. We understand your point is quite important. In order to convince you, it
seems to me that we have to consider the energy flux across the free surface.
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