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Nonlinear transient waves induced by the movement of a wall have been studied.
It is known that analytical solutions can become singular at the intersection of
the free surface with the wall due to a confluence of the boundary conditions
(e.g., Lin, 1984). This can have global influence on the computation and causes
fundamental difficulties (Dommermuth & Yue, 1986). We, however, explore the
problem more carefully and conclude that the singularity depends on the analytical
method applied and the computational difficulty can be resolved with less effort
than expected.

When the wall moves with constant acceleration, we apply small-time asymp-
totics to the inviscid and incompressible model to obtain a solution which satisfies
all the initial and boundary conditions except at the contact line. Chwang (1983)
argues that the singularity is outside of the physical domain by using a stationary
coordinate system and expanding the wall boundary condition about its initial
location. But that expansion is made about the singularity, which makes his
straightforward expansion invalid. Formulation of the problem in a Lagrangian

or moving coordinate system, which obviates the expansion of the boundary con-
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dition, reveals that the singularity is at the contact line. This is confirmed by
checking conservation of mass and energy. The contact-line singularity is shown to
be caused ‘by the use of the small-time expansion. The independent variables are
coupled, so that any method which separates time from the spatial variables, such
as the small-time expansion, cannot approximate the solutioﬁ properly. In fact, we
show that the resulting solutions fail to be asymptotic in time within a distance
O(t?) of the contact line. We naturally seek a self-similar correction, which cancels
the logarithmic singularity at the contact line and becomes of higher order when
z(= z + iy) > t%, where the origin of the coordinate system is at the undisturbed
contact line. For small Froude number, we can obtain a closed-form solution for

this self-similar correction, which enables us to write the complete solutions as
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where a is the Froude number and 7 is the free-surface elevation. Asymptotic
evaluation of the above integrals near the contact line (2 < t?) gives the local

solution as follows:
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These expansions agree with those of Roberts (1987), obtained by a more difficult
method, except that the constant 7 /4 in the logarithmic terms is different because

a somewhat different problem has been studied.
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Based on the above analysis, we can also resolve some of the computational
difficulties by incorporating the time dependence properly with the spatial variables
through a modified time-marching method. The dynamic free-surface condition
needs to be expanded about the initial (7 = 0) and present (n = no) location of the
free surface in the small-time expansion and time-marching process, respectively.

That gives
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which is evaluated at y = 7o. In the small-time expansion, all the terms except the
first one are of higher order. A posterori, some neglected terms become infinitely
large near the contact line. Therefore, for small Froude number, we approximate
n — no by a small parameter, ¢, which depends on time, and ignore the nonlinear
terms. The resulting set of governing equations with a free-surface boundary con-
dition of the Robin type yields a well-behaved solution even at the contact line.
In this way, we satisfy the boundary conditions at the proper location of the free
surface (y = n) rather than where it was, and the time dependence is carried by
~ the desingularization parameter e. When this is applied to the standard time-
marching process, we first guess €(z,t), which instantaneously gives us ¢. Then,

we can use
(¢ +edy) = __(¢2 + ¢2) — Y= MNPy

to obtain the free-surface condition at next time step. The Neumann conditions

on the wall and bottom are always known, so that we can solve for the flow field
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and the free-surface elevation. We, then, compare the increment of the elevation
during the time step with the ¢ we guessed and iterate to convergence.

When the wall starts to move impulsively (Lin, 1984), the wall boundary condi-
tion is inconsistant with the initial state of the fluid while the field equation does
not contain any time operator. Therefore, in order to pose.the problem properly,
we have to determine the change that the impulse has done to the flow field to
obtain the initial conditions at ¢ = 0%. Since the Laplace equation does not re-
quire initial conditions, we can integrate the free-surface boundary conditions from

t =07 tot = 0% to get the initial conditions on the free surface, which are

This time, the solution technique we used for the case of constant acceleration is
not satisfactory. For sufficiently small time, we cannot linearize the free surface
conditions for small Froude number. Once we keep the nonlinear terms, a similarity
transformation no longer exists due to the constant-velocity condition on the wall.
This nonlinear problem and a proper initial condition at ¢ = 0% near the contact

line are not yet fully understood.
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