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In this paper, an attempt is to be made to clarify the confusing
situation of the existence of different near and far field formulations for mean
drift forces. The keys to the systematic development of consistent formulations

by these methods are shown, and the results obtained by the present formulations
are presented and discussed.

1 Introduction

It is well known that two major methods exist for the calculation of
mean (time independent) drift forces on floating bodies in waves. Based on the
principle of conservation of momentum, the far field method was originated by
Maruo [5] for the calculation of horizontal forces. It was subsequently extended
by Newman [7] to yaw moment, and by Lee and Kim [4], Molin and Hairault [6] and
Sclavounos [10] to the calculation of the vertical force and overturning moment.
On the other hand, the so called near field method suggested by Pinkster and van
Oortmerssen [9] relies simply on the direct integration of fluid pressure on the
body surface.

Not surprisingly, relative advantages and disadvantages can be found

between the two methods. It has been pointed out by Sclavounos [10] that the far

field method may be more efficient and less demanding on numerical
discretisation. On the other hand, the near field method is potentially more
useful if one wishes to extend the solution to the calculation of time harmonic
second order forces. In any case, the existence of the two methods should, in
principle, be useful for cross checking theoretical derivation and computational
implementation.

Since both the far and near field methods in their most general form are
based on the same usual assumptions of irrotational flow and boundary conditions,
they should yield identical solution of all forces and moments for any
sufficiently defined hydrodynamic problem. However, experience [3][1l] has shown
that agreement is frequently far from perfect. A lone exception to this appears
to be the exact agreement obtained by Drake, Eatock Taylor and Matsui [1], who
considered a vertical cylinder free to pitch at the sea bed.

Of course, many reasons may exist for the disagreement of results. The
obvious amongst them is the different numerical error incurred in the
evaluation of the formulations in the two methods. However, a close study of some
well known near field formulations published reveals that none of them agree in
entirety with each other. While the limitations of results given by Pinkster
have been pointed out by Standing et al [ll], more recent results by Molin [6]
and Ogilvie [8] are again different. A similar situation can also be observed for
the far field formulation of vertical drift force and overturning moment. While
some variations in these formulations may be attributed to the use of different
stated assumptions, they do not always provide the complete explanation.

From this state of affairs, it is clear that the solution of mean drift
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forces on bodies in waves is still by no means well established, and the
clarification of the differences between the various near and far field
formulations is of some importance. It 1is also an opportune moment to
investigate the possibility of obtaining good agreement between the near field
and the far field results. The derivation of both near field and far field
formulation in the present work suggests that previous results in vertical force
and overturning moment are often incomplete.

2 Thé near field formulation

Although the near field formulation is conceptually the simpler of the
two methods for the calculation of mean forces, as pointed out by many authors
[10][{11][8] careful consideration must be given to the integration of the fluid
pressure on the moving body surface. Denoting the first order rotational
amplitude of the body with vrespect to the fixed reference axis Oxyz in roll,
pitch and yaw as Q,, Qg and (g, and the resulting transformation matrices for
describing a vector X moving (to X') with the body fixed axis Ox'y’z’ as T,, T
and T6 respectively, we may write X' - X = T(X-X )+x(l>, where X -(xc,y ,zc) is
the centre of rotation, x(l)-(x ’X2'X3§ is the %irst order transiationa motion
and T is a function of Ta, T5 ana Tg.

Due to the lack of commutativity in rotation, for example
TQT5 v T5T4
(L

and in accordance with Stoke'’'s expansion, a decision must be made towards the
choice of the sequence of Euler’s angles in the rotational degrees of freedon,
such that the instantaneous location of a moving vector on the body surface may
be consistently described. Following [11], the sequence of roll, pitch and yaw
will be adopted here, so that we assume T-T6T T4. It is noteworthy that if one
employs a different sequence of the Euler’s angles, or if the rotations are
assumed to be about the moving axis [8], T will be different to second order and
so will be the general formulation of the second order mean vertical force and
overturning moment.

If we make a further assumption that the body in question 1is not
penetrating the sea bed or other bodies during its motion, and all spatially
independent pressures are assumed to be zero, the formulations for vertical
axisymmetric bodies can be written as

2
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+ T(l)(Mé1)+Mél)) + x(l)x(Fél)+F§1))

(3)
such that E (1) is the relative wave amplitude, N—n//(l-nzz) where n_ is the
vertical component of the inward normal on the water line, A, is the water plane
area, T is the first order component of T, F (1), F (1} are the first order
hydrodynamic forces and hydrostatic forces respectively while M <1), M (1) are
the moments. The integrals in WL and S_ are performed on the mean water iine and
mean body surface respectively. It appears that part or all of the last term in
equation 3 is usually neglected in the literature. Although this term is zero
for freely floating bodies, it may contribute significantly for structures such
as tension leg platforms. A complete formulation for bodies of arbitrary geometry
and further discussion may be found in [2].

3 The far field formulation

As stated above, the formulation of the mean vertical force and
overturning moment obtained by the near field method are generally dependent on
the assumption of a sequence of Euler’'s angle for the definition of the moving
body surface. Obviously, in order to obtain a corresponding formulation by the
far field method, this assumption must also be specified. However, it appears
that this assumption has not been a requirement in most of the existing far field
formulations for vertical force and overturning moment for floating bodies. It
therefore follows that these formulations are incomplete.

Considering the rate of change of translational (L) and rotational (R)
momentum respectively, we get [7] \

EQE L=-p I (V(% + gz)+(V8.V)V®) dv + p I Vé.U ds = 0
' S
(4)
EQE R = -p J (X-Xc)x{V(E + gz)+(V®.V)V®) dv + p I (X-X )xV8.U ds = 0
\ S
(5)

where p is the pressure and V is a control volume bounded by S, which consists of
the instantaneous wetted moving body surface S’ and any suitably chosen
fictitious surface outside the body. Making use of Gauss's divergence theorem, we
can write
(2) . .
F = o (En + (V@ -U V& ) ds -p gz(0,0,éz) ds

S-S s
(6)

2
P -, I {%(X-Xc)xn + (V8 _-U ) (X-X)xV® ) ds

S-S’
-p J gz (X-Xc)x(0,0,nz) ds

S
(7)

Notably, the last term in both equations can contribute. If the sequence
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of Euler’s angles is the same as that of the previous section, and again for the
sake of simplicity if one considers axisymmetric bodies only, the last term in
equation 6 gives rise to the last term of equation 2, and the last term of
equation 7 becomes

(1

g Cx PP xx ) % 0,0,x5) 4

(8)

4 Results

Finally, on the basis of the formulations presented above, mean vertical
forces and moments in a unit incident wave amplitude are given in Table 1 for a
floating hemisphere. The first order solution is provided by a Boundary Series
Element implementation similar to that of Yue, Chen and Mei [12], but
specifically developed for vertical bodies of revolution. The hemisphere is of 1m
radius with a mass of 2146.7kg tethered horizontally by a linear spring having a
stiffness of 100N/m. The centre of rotation and CG are assumed to coincide at
0.5m below mean water level. The radius of gyration is 0.5m and the water depth
is 3m.
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Table 1
Near field Far field
(2) (2) (2) (2) (2) (2)
w 'Xll |X3' |X5| Fl F3 MS Fl F3 MS
2.0 1.003 1.078 .5078 1045. 5247. -5.788 1045. 5247. -5.797
3.0 .8238 1.752 1.390 1184. 9602. -3093. 1182. 9593. -3095.
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Pawlowski: With respect to rotations it should be understood that angles are not properly defined
as small parameters in the problem discussed by the authors. In order to visualize this, it is
enough to consider a semi-circular cross-section and consider its rotation, first with respect to the
intersection of the centerplane with the waterplane, and next with respect to an arbitrary point
on the free surface. It is clear that in the first case the geometry of the cross-section remains
unchanged; but in the second, its displacement can be made arbitrarily large. It is clear that
to treat the angle as a small parameter is meaningless without specifying the axis. A consistent

perturbation theory must impose the condition of small displacements of the body with respect to
its characteristic dimension.

Ref. (1) J.S. Pawlowski “Basic Relations of Ship Theory Part I,” Delft University of Technology
1982, Report of Shipbuilding Laboratory.

Hung & Eatock Taylor: While we agree with the suggestion that a consistent perturbation
theory must, for practical use, impose the condition of a small perturbation parameter, this is
totally unrelated to the observation regarding the center of rotation. Instead of being a result of
the necessity of a small perturbation parameter, the problem we describe has a more fundamental

nature. It is a characteristic of any rigid body moving in a multi-phase medium (m this case air
and water).

Although the employment of an arbitrary center of rotation (located for solving the rigid body
equations of motion) does not provide different local response and wave excitation in first-order
analysis, the same cannot be said of the second-order mean vertical force and overturning moments.
For example, a different value of 2, in Equation 2 of the abstract would leave the sum of all the
terms except the last unchanged, while the last term is proportional to z,. This observation leaves
where 2, should be, unanswered. Physically, the change of the force is evident by considering the
second-order buoyancy force due to the change of submerged volume when the body is in motion
if 2, is not zero.

Korsmeyer:

1. Can a perturbation approach be justified for a problem which contains a body with a sharp
corner? Note, for example, that second-spatial derivatives of the first-order potential, which appear
in the right-hand side of the body boundary condition at second-order, are not integrable at a body
corner.

2. Also, you mentioned a mapping scheme to take care of the singularity in the first-order
potential at the corner, but you covered it only briefly. It appeared to be the mapping which corre-
sponds to a square-root singularity, however it should be the mapping for a cube-root singularity.

Hung & Eatock Taylor: We should like to thank Dr. Korsmeyer for his questions on a subject
that has been much neglected in the literature of hydrodynamics.

1. We beleive the academic’s reply is no, both from consideration of body-free-surface inter-
section points and submerged sharp body corners. This is because in the former, the perturbation
parameter employed here (e, the wave slope) can approach infinity, and even as ¢ tends to zero, the
exact solution is still physically undefined; and in the latter, it is indeed the case that second-order
forces are indeterminate if, say, ¢,, o r—%/3) at the corner. The existence of sharp corners on
the body surface can introduce substantial error to the numerical calculation of second-order drift'
forces, and to a lesser extent, first-order hydrodynamic coefficients.

Despite this seemingly sorry state of affairs, we believe, from a practical point of view, that it is
still desirable to pursue an accurate numerical solution to second order. In our experience, if the
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corner is well submerged, first-order solutions and second-order mean forces can still be evaluated,
although the rate of convergence becomes greatly reduced. [A feature of the corner singularity is
that it ‘pollutes’ the solution.] A way of tackling this problem which appears to hold great promise
has previously been reported by Liggett and Liu for steady flow problems (see below).

2. A few years ago we conducted a simple numerical experiment using the quadratic hair line
crack tip elements commonly employed in fracture mechanics. Although we were fully aware of the
fact that this type of element (¢, o r~/2) does not provide a suitable singularity characteristic for
an L-shaped corner (¢, a r~1/3), we felt that the exercise was worthwhile. Unfortunately, their
‘employment seemed to provide no real benefit towards convergence.

Ref. Liggett, J.A. and Liu, P.L.F., Boundary integral equation methods for porous media flow.
George, Allen & Unurns publ., 1983.
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