AN ACCELERATED COMPUTATIONAL METHOD
FOR TIME-DOMAIN ANALYSIS OF 3D WAVE-BODY INTERACTIONS

P. FERRANT.
Laboratoire dHydrodynamique Navale.

UA C.N.R.S. 1217
E.N.S.M.-NANTES. (FRANCE)

INTRODUCTION

; Since the early work of Finkelstein (1957). the iinearized time domain analysis
of floating bodies has been subject to numerous studies. However. the applications have
been restricted for a long time to two-dimensional geometries. (e.g. Adachi & Ohmatsu
(1980))., or to bodies with axiai symmetry (Newman (1985a)). Despite the recent
development of efficient numerical methods for the computation of the 3D time~depending
Green function, the fully 3D time-domain models seem to have been applied only to very
simple bodies such as spheres or cylinders. (Jami & Pot (1985): mixed FEM-BIE
method: Beck & Liapis (1887): BIE method). This is due to the large CPU time required,
during the time-stepping procedure, for the evaluation of the convolution Iintegral.
involving numerous computations of the Qreen function and of its derivatives.

An accelerated method for the linear, time-domain analysis of three-
dimensional wave-body interactions In water of infinite depth Is described. A substantial
reduction of the computing time is obtained using a tabulation technique for the evaluation
of the Green function and its derivatives, In place of the direct application of numerical
schemes such as those described In Newman (1985b) or Beck & Liapis (1987). This
improvement allows the hydrodynamic behaviour of complex structures, such as TLPs, to
be analysed In the time domain. As an application of the method, the impulse response
functions in heave and surge modes of a submerged torus and of the ISSC TLP have been
computed. The continuous curves of added mass and damping coefficients were then
evaluated by Fourier transforming the Impuise functions, and compared with the results of
a conventional frequency-domain panel code. Respectively 400 and 1200 panels are used
in the discretization of the complete bodies.

OUTLINE OF THE METHOD

We consider a three-dimensional body on the free surface of a perfect fluid.
Starting from rest for t < 0, a prescribed velocity is imposed to the body for t > O.
Assuming irrotational flow and small motions, a linearized problem for the velocity
potential ¢ is defined. Using Green’s identity and the impulsive source Green function, an
integral equation for the time-depending potential on the body surface is then derived
(Wehausen (1971). This equation is solved numerically using a panel method in which the
body surface is approximated by plane quadrilateral panels over which the source strength
is assumed to be constant. The time variable is discretized with constant steps. and the
convolution Integral Is evaluated using a simple trapezoidal rule. The updating of the
convolution integral requires the computation of a complete set of influence coefficients at
each time step. involving Integrals of the time-depending Green function and its
derivatives over the panels. The complete Green function for a submerged source with a
Dirac deita function strength is given by:
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where M(x,y.z) and P(x’',y’.z’) are respectively the source and the field points, ri=|PM4l
with My symmetric point of M with respect to the free surface. R=[(x-x")2+(y-y')2]1/2,
cose = —(z+z')/ry. T = t(g/ry)* %, & the Dirac delta function and H the Heaviside step

function.
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Newman (1985b) and Beck & Liapis (1987) gave varlous formulas which may be
used to compute G and Its derivatives, depending on the values of the parameters cose
and 7. Despite the advantage of these formulas over ordinary quadrature methods In terms
of computational efficiency. their direct use in fully 3D time domain models leads to highly
time—consuming computer codes. The application of such numerical models to complex
structures. with accurate space and time discretizations, seems therefore to be only
possibie on supercomputers. The major computational burden being the evaluation of the
Green function, the first problem to be addressed Is the minimization of the CPU time
required for this task.

Taking Into account the fact that the non-trivial terms to be evaluated may be
reduced to the bivariate function G and its derivatives, we developped a tabulation
procedure for these functions. The 2D domain described by cos® (0<cose<1.) and T
(0<Tw) is truncated at a large value Tmax. and the remaining bounded domain is mapped
by a discrete set of equispaced (cose, T) points for which G and its derivatives are
computed by numerical schemes very similar to those described by Newman (1985b).
This tabulation procedure has to be performed only once. and the results are stored in
permanent data flles. When a time-domain simulation Is performed.for a given body
geometry and motion, the resuiting computations of the Green function and its derivatives
are replaced by first order bivariate interpolations of the stored data. The tabulated part of
the variables plane is sufficlently extended to allow the use of a large time asymptotic
expansion if ™Tmax. However, the use of this particular procedure only occurs for a very
small part of the computation, when the mutual influence coefficlents of panels Inter-
secting the free surface are evaluated at large time, and these few extra computations do
not affect the overall efficiency of the method.

The large saving in CPU time obtained using this tabulation technique allows
time—-domaln analysis to be performed on complex 3D structures within a reasonable
computing time.

RESULTS AND COMMENTS

Results presented in this paper concern the application of the code to the
determination of the heave and surge hydrodynamic coefficients of two different bodles.
using the impulse response method. All computations were run on a VAX 8700 scalar
computer.

The first one Is a submerged torus., which may be regarded as the submerged
part of a semi-submersible. This body has already been studled in the frequency domain
by Huime (1985). We give in figures 1 and 2 the heave and surge impuise response
functions of the body. discretized by a total of 400 panels (Fig. 9). For the heave mode.
the cyclic symmetry of the discretization has been taken into account to avoid redundant
evaluations of influence coefficients. The reduced time step is dt=0.1, and Nt=200 time
steps have been used for the computation. The CPU time for this case of about 2
minutes. For the surge mode. only two symmetries are exploited, and the code has been
run for dt=0.2 and Nt=150. The required CPU time Is of about 20 minutes. Figures 3 and
4 eoxhibit the continuous curves of added mass and damping coefficients obtained by
Fourier transforming the impulse response functions. The discrete points have been
obtained by a direct computation of the coefficients using a conventional frequency-domain
panel code. with the same body discretization. The agreement is very satisfactory for both
modes. A version of the code with direct computation of the Green function and its
derivatives has been run on these cases. No significant discrepancy has been observed
on the results, compared to that of the accelerated code.

At last, the code has been applied to the well-documented ISSC TLP (Eatock-
Taylor & Jefferys 1986). A total of 1200 paneis has been used to discretize this rather
complex body (see Fig.10). We give Iin figure 5 and 6 the heave impulse response
function and the corresponding frequency-domain hydrodynamic coefficients obtained by
Fourier transform. For this case, dt=.12 and Nt=200. The CPU time was 3h30. Figures 7
and 8 give the same results for the surge mode. obtained with dt=.20 and Nt=200, and
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the same CPU time. Note that the Impulise response functions for all modes may be
obtained in a single run of the program. with a small extra CPU requirement compared to
a single mode computation, provided enough out-of-core storage is avallable.

A perspective view of the G. plotted as a function of cose and 7%, is given In
figure 11, for 0< 72 < 150.

A striking feature of the method is that a large part of the CPU time is now
dedicated to the computation of the convolution integral. Since this part of the compu-
tation is directly subject to vectorization. new significant savings are anticipated when
running the program on a vector computer. Improvements of the tabulation technique are
also planned, combining finer tabulations and simpler interpolation schemes.

The author would like to thank A. Jami for his encouragements and support during this work.
G. Delhommeau is also ackowledged for providing the frequency domain results for the TLP.
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Figure 9: Torus discretization Figure 11: Plot of G(cose,T )
( see Hulme (5] for the dimensions)




