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Introduction

The existence of edge waves over a sloping beach has been known since 1846 when
Stokes(1), on the basis of linear water-wave theory, produced a simple solution of
the governing equations and boundary conditions, which described a wave which was
bounded in amplitude at the shoreline, and which decayed in a direction out to sea.

Over a hundred years after Stokes' solution Ursell(2) showed that it was just the
first of a finite number of bounded edge wave modes - the precise number depending on
the beach slope, and produced solutions in the form of a finite sum of exponential
satisfying the linearised equations and boundary conditions. No explanation was
given as to how the solution had been arrived at. Roseau(3), apparently unaware of
Ursell's work, developed a systematic approach to constructing edge wave modes based,
on an integral representation which converted the problem into a functional equation.
He derived bounded edge-wave solutions which can be transformed into the Ursell
solutions as well as solutions having singularities at the shoreline.

Whitham(4) showed how the Ursell edge wave modes could be determined
systematically using an approach similar to, but simpler than, that of Roseau.

Here we show how Whitham's method can be used to construct edge wave modes over a
sloping beach on which a mixed boundary condition is satisfied. Such a problem
arises when certain effects of rotation are included, or again, in the case of a
stratified fluid having an exponentially varying density over a sloping beach. This
later problem has been considered by Greenspan(5) who has written down edge-wave
solutions. The solution obtained here agrees with the Greemspan solution and reduces
to the Ursell solution as a special case.

Formulation

Cartesian axes are chosen with y = 0 (x > 0) the horizontal plane of the

undisturbed water surface, the z-axis the shoreline and y measured vertically

upwards. The fluid occupies y + x tan # > 0, x> 0, A < %, -0 < z < ». 0On linear
water-wave theory there exists a velocity potential ®(x,y,z,t). We seek solutions in
the fluid region which are simple harmonic in time, wave-like in the

(long- shore)z-direction,and which vanish as x - » (out to sea).
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Thus we assume

$(x,y,z,t) = Re ¢eiikze'iwt, k>0 (2.1)
whence ¢(x,y) satisfies
(V2 - kg =0, y+xtan f>0, x>0 (2.2)
M- fy=0,x>0, ) =u/g (2.3)
g0, y+tan >0, x~- o (2.4)
Finally ¢n +ap =0, on y+xtan =0 (2.5)

where n is the normal into the fluid and e is a real constant.
We seek non-trivial solutions to (2.2) - (2.5), for k, e f# given, anticipating

that this will only be possible for certain A(= wz/g). We note first that a simple
Stokes- type solution exists, namely
¢ = exp{- kx cos p + ky sin p}. (2.6)

This satisfies (2.2), (2.4) for 0 < g < %, and (2.3) provided = k sin g. It also
satisfies (2.5), which we write as
¢y cos f + ¢x sinf+ap=0, on ycosf+xsinf=20
provided @ = k sin y and g = § - .
Thus given f, @, k with a < k, then
A=ksin (8- x)
where @ = k sin y defines y, so that
2= (&% - o) sin f- a cos §
We seek to generalise this result to produce further bounded solutions for a > 0
similar to the Ursell solutions for a = 0, namely,

#(x,y) = exp{- kx cos § + ky sin f}

n
+ 2 Ay, [exp{ - k[x cos (2m - 1)8 +y sin (2m - 1)4]}
=1
+mexp{ - k[x cos (2m + 1) - y sin (2m + 1)/4]} (2.7)
where _
o = €O ] St
r=1
and A =k sin g where p = (2n+1)8
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3. Solution
Equation 2.2 is satisfied by exponentials of the form

ep{S(¢ + ¢ Dx = (- ¢hy)

for any (. We therefore seek a solution in the form

§(x,¥) = g jc {£(O) expb{(¢+¢ Dxri(¢- ¢ Hydeg(Qexps{ (¢+¢ Hx-1(¢- ¢ Hyhae 3.1)
for some f, g, C.
Application of the free surface condition (2.3) shows that

((+0) (¢-DE(Q) = (¢+0) (¢ D& (0) (3.2)
whilst it can be shown that the conditions (2.4) (2.5) are satisfied if

A= k sin {(20+1)4-x}

where a = k sin y
d f(o 1%121 ((‘ZW-S)(C‘ZUS)
an =

NCE ) NI

Here ¢ = ei”, A=k sin p, and w = eziﬂ.

The contour C encloses all the poles of £({), g({) except at { = 0. The
resulting contributions from the residues at the poles after multiplication by a
normalising constant, produce the solution

§(x,y) = e kx cos (B-x) + kysin (f-x)

. % A {e—kx cos{(2m-1)4-x} - ky sin {2m-1)p-x}
o ,
m=1

. Cmne—kx cos {(2m+1)f-x} + ky sin {(2m—1)ﬂ-x}} | (3.3)
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where ' C,y = tan (mp-y)/tan mf (3.4)

m

-D)" t 1- -
A = tan%mﬂ?;? anég;rﬂr)ﬂ taﬁ??ﬁfg)%?x} (3.5)

r=1

It can be seen that in agreement with Greenspan(5) The Ursell solution is obtained
for ¢ = 0.
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Martin: Can you prove that your ‘generalized’ edge waves do not exist when « is large? In other
words, have you considered the other special case, @ — 0o, when the boundary condition on the
sea floor becomes ¢ = 0.

Evans: For finite o we must have a < k so that the sets of poles and zeros, all lie on the unit circle
in the method described here. However, I believe the & = oo, or ¢ = 0 on the beach, case also
permits edge wave solutions which are best derived by putting o = 0 to begin with and arise as
a simple example of Whitham’s method. I would surmise that they are slightly more complicated
than the Ursell edge wave modes, since the fundamental mode is itself probably a sum of two
exponentials in contrast to the simple Stokes solution.

Ursell: Does your method also give the continuous spectrum (propagating waves)?

Evans: The method, which is due to Whitham, does indeed give the continuous spectrum although
I have not worked it through for this mixed condition to see if it gives the same result as obtained,
for example, by Peters who considers the same problem in 2-D, t.e.with k = 0. Whitham shows
how the continuous spectrum can be derived in the simple problem of a rigid bed condition.

Kleinman:

1. Is there a relation between your solution and a Weiner-Hopf treatment and if they are not
the same can you use your solution to go backwards and determine the appropriate factorization
in a Weiner-Hopf approach?

2. Your problem looks a lot like the impedance wedge problem for the Helmholtz equation.
Could you employ the Kantorovich-Lebedev transform to good advantage?

Evans:

1. I do not see how one can convert a problem in a wedge to one in a half-plane or strip
which is the normal geometry for Weiner-Hopf problems. Conformal mapping is not available for
the modified Helmholtz equation and any other type of transformation which converts the problem
into one in a half-plane would surely leave the boundary conditions intractable.

2. I do not think Kantorovich-Lebedev transforms will work when we have both the Helmholtz
equation and mixed condition on each face.
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