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Summary

In an earlier work on a spectral method for nonlinear wave-wave and
wave-body interactions (Dommermuth & Yue, 1987, hereafter denoted as DY),
we presented in passing and without derivation a closed-form equation for
the case of shallow-water waves, which was in error. In this note we
rederive the set of shallow-water evolution equations which 1s generalized
to an arbitrary high order in the shallowness parameter. The equations
show that there is an upper bound on the wavenumber, and hence resolution,
of this approximation. As a demonstration of their usefulness, high-order
forms of the equations are integrated for the case of long wave generation
by a moving surface pressure, and the results are compared to the

computational and experimental data of Wu & Wu (1982), Ertekin (1984) and
others.

Formulation

Consider the irrotational motion of a homogeneous, incompressible and
inviscid fluid under a free surface in depth h. A velocity potential
b(x,2,t) (x=(x,y) 1is in the mean horizontal plane and z is positive
upward) exists which is harmonic within the fluid. If we define the
surface potential:

05 (x,t) = &(x,7(x,t),t) (1)
where z = 9(x,t) is the free surface which is assumed to be continuous and
single-valued, the kinematic and dynamic boundary conditions on the free

surface can be written in the form:

. * Vx<I>S°Vxﬂ - (1+Vx77'Vx17) ¢ (x,9,t) =0 (2a)
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where Vy £ (8/0x,8/8y) denotes the horizontal gradient and P,(x,t) 1s the
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prescribed surface pressure. (For simplicity, we choose time and mass
units so that gravitational acceleration and fluid density are unity, and
all spatial coordinates are normalized by typical wavelength.)

For shallow-water waves, h({l, we expand ®(x,z,t) in a power series
in z about the bottom z=-h, so that we have in general (e.g. Mei 1983):

]
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d(x,2z,t)

cos[(z+h)V ] ¢ (3)

where §(x,t) is the two-dimensional potential of ® evaluated on the
bottom, and the COS operator is defined as:

(_1)n(z+h)2n Vin
(2n)!

00
COS[(z+h)Vx] = L

n=0 (4)

The vertical particle velocity is then:

) 3 5
- R BT e

Qz(x,z,t) =
= -SIN[(z+R)V ) ¢ V ¢ (5a)
where |
w0 (-1)"(z4n) 20T y2002
SIN[(z+h)V_JeV_ = L
x' 'x =0 (2n+1)! (5b)

Following DY, we express the surface vertical velocity, ¢z|z=¥» in S
terms of ¢, which in turn is solved in terms of the surface potent al, ¢°.
Thus, we write on the free surface, z=1:

¢ (x,9,t) = -SIN[(n+h)V, ] * Ve (6)
and from (2):
5(x,t) = 0(x,0,t) = COSL(P*MIV, ) ¢
S [1- £y £, - £+ oan) (xE) -
where fn = %T (r]+h)n Vz

Clearly, f,’s are in genérgl not commutative, and also, f2n¢fnfn5f?2, for
example. The problem 1s complete if we formally invert (7) and write:
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$(x,t) = SEC[(7+h)V,] 8°(x,t) for I(n+m)V I ¢ I

(8)

so that

b (x,7,t) = -SIN[(7+h)V,] * V_ SEC[(y+h)V ] 5 (x,t) )

Whence, we finally obtain closed-form expressions of the free-surface
evolution equations:

My + V050V 0 + (14V_neV g (SINL(n+h)V_JoV_SEC[(n+n)V ] ¢5} = 0

SRR v 0%y 0% - 2 (147 1oV ;) (SIN((7+h)V )V SEC((y+h)V ] 8°)%= -p_

(10)

In general, the SEC operator, which is the inverse of the COS operator,
can be written out, by inspection, to any order of approximation. We give
here only the first six terms:

2 3,
SEC[(n+h)Vx} =1+ f2 + [fz-f4] + [fz-(f2f4+f4f2)+f6]

4 .2 2
* e, - (E5f +E £ £ 4F £)+(£, 6 +f £ +f £,)-£]

25455 4E4% 565,
+ [fg-(fgf4+f§f4f2+f2f4f§+f4fg)+(f§f6+f2f2+ f2f6f2+f4f2f4+f2f2+f6f§)
(£ fgtE ettt gty )
+ o[(n+m)V )12 (11)

In the special case of constant f+h, the spatial operators are
commutative, (11) reduces to the form of the ordinary Taylor expansion of
secant, and (10) reduces to Egs.(2.10) of DY.

In order for the perturbation series to be convergent, there is an
upper bound on the resolution of the present approximation, given by
| (9+h)Vx| < 7/2, which is the radius of convergence of (8). For example,
if we represent the surface potential, ¢S, in Fourier series, the above
inequality places a specific 1imit on the maximum horizontal wavenumber,
relative to (9+h), that can be used.
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Numerical Method & Results

Given initial conditions Qs(x,O) and %(x,0), prescribed forcing
Pyo(x,t), and suitable boundary conditions, (10) can be integrated directly
in time for any specified order of approximation, M. For large M, (10)
requires high-order spatial derivatives of $S and 7, so that for
computations, it is useful to represent $S and 7 as spectral series, so
that the spatial derivatives are calculated analytically. Thus, depending
on boundary conditions in x, orthogonal basis functions such as Fourier,
Fourier-Bessel, Chebyshev, Legendre etc. may be employed. If explicit
time integrators (such as Runge-Kutta) are used for (10), matrix inversion
is not required, and the computational effort is dictated only by the
necessary projections between the physical and spectral spaces. With the
use of fast transforms, the operation count is typically linearly
proportional to the number of spectral modes, N, and order M. As with the
non-shallow-water case of DY, exponential convergence with respect to both
M and N can be expected, subject to the validity and convergence of (3).
This is confirmed by our numerical experiments.

For illustration, we apply the present theory to the periodic
generation of upstream solitons by a translating surface pressure
disturbance (e.g. Wu & Wu, 1982, Ertekin, 1984). Specifically, different
high-order forms of the evolution equations (10) are integrated and the
results compared to available computational and experimental data.
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Chin: The authors make use of pseudo-differential operator theory to derive high-order shallow

water equations. The condition | (7 + h)V, |< 7/2 makes sense in that setting. Physically, this

must be interpreted as a ratio of wave height to wave length. In this sense it is consistent with the

concept of long wave theory. Here, we must also require that maz | n |[< h << 1.

The numerical computations at large time seem to be contaminated by numerical dispersion at

least at the leading and trailing edges of the primary pulse.

Dommermuth & Yue: The high-wavenumber oscillations we observe are probably non-physical
and related to the lack of smoothness of the cosine pressure distribution used. The wavelengths
of these oscillations are somewhat greater than grid spacing and are not likely to be a result of

grid-scale instabilities.

- 36 -




Schultz: You state that in previous calculations you filtered your pseudo-spectral results. Do you
do this by truncation of unaliased or aliased coefficients?

Dommermuth & Yue: For the present set of calculations, no filtering or smoothing of high-
wavenumber modes was done, although in view of some grid-scale error growth, such filtering may
indeed be desirable. In our previous work (Dommermuth & Yue, 1987), we have found it useful to

apply an ideal (or smoothing) filter to remove a small fraction of the highest unaliased modes near
the wavenumber truncation for some applications.

Cooker: You have a condition | (n+h)V, ¢ |< 5¢. If you add a constant K value to ¢ everywhere
on the free surface, the solution cannot be changed (only V¢ is a physical quantity). By making K
arbitrarily large, the right-hand side of this condition can be made arbitrarily large, thus ensuring

its validity. Can you clarify this point?
Dommermuth & Yue: For shallow water, we write an expansion about the bottom, z = —hA, so

that we have even powers of height (n + h). In this sense, A is not arbitrary but a parameter of the
problem.

Wehausen:

1. I am confused by the inequality | (n + )V, |< £, which appears to be important. Can you
clarify what is meant by it?

2. Your trailing “solution” is moving to the left in the coordinate system fixed on the pressure
distribution. Is it really moving to the right, but with subcritical velocity? Do you have any
experimental evidence for its occurrence?

Dommermuth & Yue:

1. Perhaps | (n+h)V.¢ |< Z¢, orin fact k(n+ h) < T, where k is the maximum wavenumber
represented, is clearer.

2. The solitary-wave-like disturbance behind the moving pressure (which has critical speed)
is moving forward (with the pressure) but with a subcritical speed. The disturbance has a steeper
rear slope. We have not made any physical observation of this problem.

Evans: I believe the same operator technique was used by Miles in a paper in .{FM in 1.985 in
which he was concerned with fundamental sloshing frequencies in shallow closed basins. He in turn
quotes Sen (1927) as the first person to use the technique.

Dommermuth & Yue: We thank Professor Evans for pointing out the references to Miles (1-985)
and Sen (1927) who introduced cosh and sinh operators (defined by their power-sen.es) for linear
waves over a variable bottom. Our technique is similar in idea but not related to their method.
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