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1_INTRODUCTION

It is well known that second order effects may in many cases be important
for the nonlinear hydrodynamic problem arising in ocean engineering. Despite
considerable efforts having been made in the past in calculating second order
unsteady forces, similar studies are rare for the actual second order velocity
potential itself, which is important for the understanding of wave kinematics. A
mathematical model has been developed for the calculation of the second order
velocity potential for arbitrary bodies. Attention 1is paid here to the
development of fast and accurate numerical solutions.

2_FORMULATION OF THE PROBLEM

Within the framework of potential flow and based on a second order
perturbation theory, similar formulations for both the first order and second
order problems can be derived in the frequency domain. However, unlike the first
order problem the second order problem is characterized by an inhomogeneous free
surface boundary condition, involving quadratic products of the first order
potentials and their derivatives. It is this inhomogeneous free surface boundary
condition that imposes a considerable computational burden on the numerical
implementation of the second order theory.

3_FIRST ORDER SOLUTION

It is believed that a first step towards the solution of the second order
problem is the accurate evaluation of the first order potential. Through the
classical Green function, G, and the new integral identities proposed by Noblesse
[1], the first order problem can be recast into an integral equation over the
boundary of the body. This integral equation is then solved by the Boundary
Element Method, with quadratic elements and use of the program 'FINGREEN' for
evaluation of the Green function. In comparison with the classical Green's
second identity, Noblesse’s formulation permits a weakening, but not complete
removal, of the singularities inherent in the numerical integration. Those
singularities may be further weakened by employing a triangle polar coordinate
transformation [2] about the singular elements. The idea is based on a sequence
of coordinate mappings, which not only reduces the degree of singularity of the
boundary integral but also enables standard numerical integration to be performed
on a square such that the integration points represent the mapping which lumps
the points toward the singularity in the original domain. This feature is
evidently advantageous for the numerical computations. Numerical results for a
vertical circular cylinder with ka=l.4, a/d=l are given in table 1, giving the
distribution of the first order potential on the surface of the cylinder. It is
observed that the comparison with the MacCamy and Fuch’'s analytic solution is in
good agreement even when only two boundary elements are used in one quadrant (two
divisions in the circumferential direction per quadrant)
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o ANALYTICAL SOLUTION NUMERICAL SOLUTION
z/d g Re Im Re Im
0.0 0 -0.1788E+0 0.2572E+0 -0.1798E+0 0.2587E+0
0.0 45 -0.7715E-1 0.1144E+0 -0.7677E-1 0.1150E+0
0.0 90 -0.7104E-1 -0.9172E-1 -0.6994E-1 -0.9184E-1
0.0 135 -0.1878E+0 ~-0.1906E-1 -0.1880E+0 -0.1852E-1
0.0 180 -0.2090E+0 0.7424E-1 -0.2098E+0 0.7541E-1
-1.0 0 -0.8312E-1 0.1196E+0 -0.8350E-1 0.1196E+0
-1.0 45 -0.3587E-1 0.5317E-1 -0.3582E-1 0.5323E-1
-1.0 90 -0.3303E-1 -0.4264E-1 -0.3253E-1 -0.4245E-1
-1.0 135 -0.8732E-1 -0.8859E-2 -0.8713E-1 -0.8730E-2
-1.0 180 -0.9716E-1 0.3452E-1 -0.9733E-1 0.3464E-1

Table 1 : first order results for a fixed vertical circular cylinder based
on two boundary elements per quadrant

4 SECOND ORDER SOLUTION

For the second order problem, the solution procedures are quite
similar to the method wused for the first order problem except that special
techniques are required to calculate efficiently the additional free surface
integral which decays slowly to infinity in a highly oscillatory manner. In the
present study, the free surface is divided into two regions in which the
integrals are treated differently. The first region, S_., is bounded by the
waterline I'’ and a circular external boundary I',. Within this region, the free
surface is discretized into planar panels and iﬂtegrated by numerical quadrature.
Outside this region, a simplification 1is possible by exploiting vertical
axisymmetry, which allows one to develop the first order potential and Green
function as Fourier series in the polar angle §. After integration in the
circumferential direction and use of orthogonality for each Fourier mode, the 2D
free surface integral can be reduced to a series of 1D radial line integrals in
which integration can be performed numerically. In order to speed up
convergence, numerical quadrature is only employed up to a finite range but
complemented by an analytical integration to infinity. This infinite integral
can be evaluated by employing Hankel's asympotic expansions of the different
kinds of Bessel functions in each term of the integrand. Eventually, the
integrand can be represented by summations of polynomials with various orders.
Integration of each term of the polynomials is found to satisfy a simple
recurrence relationship from which its value can be easily calculated.

Another difficulty encountered in the second order solution is the
treatment of the double derivative of the first order potential, which occurs in
one of the free surface integral terms. High accuracy of this double derivative
is rather difficult to achieve, especially in the region around the body, because
the first order potential itself is obtained numerically. Using Laplace’s
equation and integration by parts in two dimensions( Green's theorem ), it is,
however possible to express the integral containing the double derivative as one
containing only first order derivatives plus two line integrals taken along the
boundaries of S.. Considering one of the typical terms as an example, we use the

transformation
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The right hand side of this expression is evidently more efficient to

compute than the left hand side, and the singularity when ® — ¥ has been
weakened.

5_NUMERICAIL RESULTS

Based on the above formulation, numerical results for the distribution of
the second order velocity potential on the surface of a fixed vertical circular
cylinder have been obtained. They are in good agreement with results from the
explicit method [3] which has been developed earlier by wusing a different
approach. Typical comparisons are shown in Fig. 1 based on the element mesh shown
in Fig. 2. Encouraged by this, more runs will be made for various geometries in
the near future so as to assess the validity of the present numerical model, and
to provide some light on the physical interpretation of the second order theory.
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Kleinman: Since the integral equation for the second-order potential involves a free-surface inte-
gral, would it not simplify the numerical computation to employ the simple source (or combination

of simple sources) rather than the Green function which eliminates the free-surface integral in the
first-order problem?

Chau: If only Rankine sources are used for the second order problem, they must be distributed
over the entire boundary of the fluid domain, including the radiation boundary which may not be
simply truncated at some finite distance from the body surface. Hence, as suggested by Korsmeyer,
this would increase the number of unknowns in the discretized integral equation. Moreover, the
main difficulty in evaluating the free surface Green function has been overcome by employing the
subroutine “FINGREEN.”

Kim:

1. From our experience, the convergence of the asymptotic expansion of the Hankel function
for large n is not uniform, and one may need many terms in the series to have reasonable accuracy.
How many Fourier modes and terms in the asymptotic expansion did you use for your numerical
result?

2. The determination of the partition between the asymptotic and analytical evaluations of
the free-surface integral is complicated by the fact that the asymptotic expansion depends on each
Fourier mode. How did you determine the partition radius?

Chau: Outside the 2-D numerical integration region (with radius equal to few times the water
depth), the free-surface integral can be reduced to a series of 1-D infinite line integrals with respect
to each Fourier mode. These integrals may be split in such a way that numerical evaluations are only
required over finite intervals, while complemented by explicit integrations up to infinity employing
asymptotic expansions of the Hankel functions. Because these expansions are not uniform with
respect to order, the bound for the finite range, Rm, is an increasing function of the Fourier mode.
From numerical experience, a good choice of Rm may be (m + 2) times half the incident wave
length. Since Hankel expansions are an asymptotic series, high accuracy of the approximation can
be obtained by truncating at their optimal values. The maximum number of Fourier modes used
in our analysis may be as high as 15.

Papanikolaou: In the evaluation of the second-order, free-surface inhomogeneity, you divided the
free surface into two regions, one near the body and the second one outside a circle of a certain
radius where analytical integration is performed on the basis of Fourier expressions of the related
functions. Are these expressions valid for the non-axisymmetric case?

Chau: This method of evaluating the free-surface integral is equally valid for arbitrary bodies,
since in the inner region, the integration is performed by 2-D quadrature. Indeed, calculations are
now in progress for general body shapes.
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