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SUMMARY

An infinitely long horizontal cylinder of arbitrary cross-section is studied
theoretically and numerically in regular beam sea waves and uniform current.
Infinite water depth is assumed. The effect of shed vorticity is neglected.
It is argued that this is correct to 0(U) where U is the current velocity
far away from the body. The results are applied to calculate linear wave
excitation loads, added mass anq damping coefficients, first order motions,

mean drift forces and roll moments as well as wave drift force damping.

The flow field is solved as a potential flow problem correct to first order
in wave amplitude. The velocity potential is divided into a steady part ¢g
and a timé dependent part ¢7. The ¢g-problem satisfies the rigid free surface
condition correct to 0(U). The free surface condition correct to O(UZ) for

a "sufficient" submerged body can be written as

2
U2 3¢ + g % _ 0 onz=20 (1)
ayz 9z

Here ¢ is defined by ¢g = Uy + ¢. Further g is acceleration of gravity and
(y,z ) is an orthogonal coordinate system where the z-axis is vertical and

positive upwards. The mean free surface corresponds to z=0.

For a free surface-piercing body equation (1) does not apply. The reason is
that equation (1) is based on U to be the first order approximation to the
steady flow field. This cannot be true for a free surface-piercing body
where there must be zero horizontal steady velocity at the intersection
points between the free surface and the body surface. In our numerical study

for a free surface—piercing body we have only used the free surface con-

dition for ¢g correct to o(u).
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The linear free surface condition for the time dependent problem ¢t can be

written correct to 0(U2) as
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This is based on that the time dependence of ¢t is eiWt, where'i is the
complex unit and t is the time variable. Equation (2) applies both for a

free surface-piercing and a submerged body. Far away from the body as well as '

for a "sufficient" submerged body the free surface condition becomes
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Grue and Palm [1] have used this free surface condition in their numerical

study for submerged cylinders.

In addition to using the free surface conditions (2) and (3) we have also
used the free surface conditions that follows by neglecting terms of o(u2)

in (2) and (3).

The body boundary condition for ¢t is written in terms of components of n
and m (see Newman [2]). The n vector is the normal vector to the body
surface. The m vector represents effects of interactions between the steady

flow and the oscillatory flow. Care is needed in the calculation of m.

The wave field far away from the body follows by using the free surface con-

dition (3) and the radiation condition.

The velocity potential ¢7 at a point (y1, Z1) in the fluid domain is written

as
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2n . (y,, 2,) = [ { Efl logr - ¢ - P E} ds (4)
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This means that a distribution. of basic sources and dipoles are distributed
over the body surface Sg, the free surface Sg and vertical control surfaces
Se at infinity. On the body and free surface 3¢/3n can be replaced by the
body boundary and free surface condition, respectively. The free surface is
divided into a near-field where equation (2) applies and an outer domain
where equation (3) applies. In:the outer domain the velocity potential due
to the body is written as a combination of wave sources and dipoles as well
as wave-free singularities. The singular point of the singularities is
inside the body. The coefficients of the different terms in the outer domain
representation of ¢7 are found as part of the equation system that follows
by letting points (yq, zy) in (4) approach points on Sg and Sg. It is shown
that this hybrid technique is an efficient and accurate way of solving the

boundary value problem for ¢r.

In order to control the numerical results for the wave excitation loads a
generalisation of the Haskind relation has been derived. The prediction of the
damping coefficents has been controlled by energy considerations. The honrt
zontal mean wave drift force has been calculated both by a direct pressure
integration method and an expression that follows from conservation of
momentum and energy in the fluid.

The numerical results have been compared with Grue and Palm's results for a
submerged circular cylinder. The agreement is very satisfactory when the

same free surface condition has been used. If we use the free surface con-
dition (2), the results agrees well with Grue and Palm's results when

h/R 3 2. Here h means the distance from the mean free surface to the cylinder
axis and R is the cylinder radius. When h/R = 1.25 there are significant
differences by using condition (2) and (3).‘As expected the solution breaks
down when we use condition (3) for a free surface-piercing body. The reason

is the same as we described for the ¢g-problem.

We have also investigated when we can neglect terms of 0(U2) in the free
surface condition. It is a good approximation to keep only terms of o(u)
when T = wl/g < ~ 0.1. Using the free surface condition correct to 0(U)
represents a simplification of the solution procedure. In that case there is
for instance only one wave system upstream and downstream. When we use the
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free surface condition correct to O(Ué) more wave systems occurs. This is
well known from the literature. The wave lengths of two of these wave .
systems become small when U - 0. This causes numerical problems. Similar
problems do not occur when we use the free surface condition correct to
0(U). Solving the problem correct to 0(U) has also the advantage that this
is consistent with neglecting the effect of shed vorticity. Correct to 0(u2)
we should take into effect the shed vorticity.

The studies presented in this articTé are part of present investigations

that deals with second order nonlinear interaction between irregular waves,
current and a two-dimensional body. It is meant to represent the first step
towards a practiqal numerical solution procedure that evaluate the combined

effect of waves and current on-marine structures.
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Discussion

The results presented show that the current influences the
excitation force much more than it influences the radiation
resistance. Does this mean that the reciprocity relation
between the radiation resistance and the excitation force
(Newman 1962) needs to be modified in the case when a current
exists?

Yes. We need to generalize the Haskind relation. This has
been done in the presented work.

In a given situation (given current, wave direction,
frequency) if the first order (excitation) force is increased/
decreased is then also the second order drift force increased/
decreased?

In general we can't say that. The second order drift force
depends on the body motion as well as the excitation force.
Due to, for instance, coupling between motion modes an
increase in heave excitation force may not necessarily mean
an increase in heave motion. The further consequence for
the drift force is not obvious.




