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1. INTRODUCTION

The Green function integral equation governing the water wave-structure
interaction problem can be expressed in an exterior, surface or interior
integral equation form. Conventionally, in the field of marine hydrodynamics
the surface integral equation is always employed in numerical computation
because of the diagonally dominant property of the resultant métrix equation
and sufficient experiences gained in practical applications. When an interior-
integral equation is adopted, the kernal function is never singular.

However, according to Mei(l) the interior integral equation has not

been used in water wave problems perhaps due to the following reasons:

(i) the resultant matrix equation would no longer be diagonally dominant,
(ii) the choice of the interior field points could be too arbitrary.
An effort to apply the interior integral equation has been made by
Martin 2) who introduced from acoustics a null field equation method based on
the original interior integral equation. Unfortunately, divergent solutions
were found for both thin and wide elliptical sections. It seems that the
derived null field equation may be valid only for circular sections and
slightly perturbed geometries based on a semi-circle or some other simple
geometries corresponding to the chosen basis of series functions. These
limitations of the null field equation approach have been well discussed
in electromagnetics, optics and acoustics (for example, by Bates et al,
Phil. Trans. Royal Soc., 1977; van den Berg et al, J. Opt. Soc. Am., 1979;

etc.).

In the present paper theoretical basis and numerical techniques to apply the
interior integral equation to general geometric forms of ships and offshore

structures are described.
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2. INTEGRAL EQUATION AND DIAGONAL DOMINANT PROPERTY

The Green function integral equation governing the radiation or diffraction

. -iwt
wave potential ¢e can be expressed as

4 . D 1’
2 | T (®) —A b (@ SR gs = -ﬁ v_(0) G(p,Q)ds  for P(x,y,2)€ls, (1) .
0 W 0 W 5

These three forms in eq. (1) may be referred to as the exterior, the surface
and the interior integral equations corresponding to the locations of the
field point P outside the body mean wetted surface Sw (i.e.in the exterior
fluid domain D), on Sw and inside sw (i.e. in the interior domain D). The

Green function has the form (Wehausen & Laitqne, 1960) :
G(r,Q) =/, + H(P,Qik) = 1/{(x-E) 24 (y-n) 24 (z-0) 2} 2+ H(P,Q5k)  (2)

As far as the surface integral equation is concerned the Green function ]

possesses a 1/r singularity for the case -(x,y,2z) = (§,n,0).

.f.

Rewrite eq. (l) approximately in a discretised form {for i = i,2,...N)as
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SA 25 i
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6ij = { o for i # 3 |
and define the SELF-INDUCED CONTRIBUTION FACTOR -
4an 3 D (neighbourhood of.Sw) .
a = - ~— (1/x )das for P, ¢ (4)
AS on P.Q, g s -

o i Qi i%i D (any positions)

For r = Oi, that is, %ﬁtends to Qi from the exterior or the interior

domain, o becomes 27 which is identical with the second form of eq. (1).

For simplicity, a circular flat panel AS_ is chosen together with a field

— Qi
point Pi of local coordinats (0,0,z) as illustrated in Fig. 1. It can be

readily derived that

4% l-l D (neighbourhood of Sw) -
o ={2w} - 2w sign(z) (1 -~ 2. ) for P.€ Sy (5)
0o a’+ z .

B(any positions)
Values of 0 versus the non-dimensional distance z/a are shown in Fig. 2. It
is apparent that the self-induced contribution factor o varies continously
and smoothly from O-2T+Yy < 4T as the field point Pi moves from a far interior L
location, via the body surface S,, to the exterior region neighbouring to the r
body surface. This conclusion holds for any arbitrary polygonal panels.

This discussion implies that if all the interior field points are chosen

such that |§| is small the resultant matrix equation of the interior integral 1
equation retains a similar diagonally dominant property to the surface

integral equation approach.

.

t For Py located in the exterior region not close to the body surface Sy, the .

first term in eg. (3) should be written as ad(Qy) + 4n{¢(pi) - ¢(Qi)}-

-
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3. CHOICE OF THE INTERIOR FIELD POINTS

As long as all the interior field points are located close to the body
mean wetted surface Sy the resultant matrix equation of the interior
integral formulation has the numerical advantage of diagonal domination.
In practical numerical computation, all chosen interior control points

make up an interior surface S which is parallel to the body surface Sw and
with a scale reduction factor Cg slightly less than 1.0 (i.e. Cg = 1.0 - €
for € being a small positive value). In the two-dimensional case, a scale
reduction factor value Cg = 0.95 implies that the area enclosed by the

interior contour is about 90% of the cross-sectional area.

In such a manner all these interior points can be automatically produced
by a computational programme suite ("HYDROINT") in terms of the same input
data file for the computer package based on the surface integral equation

technique.

4. NUMERICAL EXAMPLES

Extensive numerical applications of the present interior integral equation
method to various ship forms and complicated offshore structures have been
conducted to verify the proposed approach. Two examples are displyed in

the present paper. Fig. 3 shows the calculated sway, heave and roll added
mass and damping coefficients for a ship section. The two setsof data
obtained from the surface and the interior integral equation techniques
coincide very well. Since the ordinary Green function is used irregular
frequencies occur when these computed hydrodynamic coefficients exhibit
abrupt variations due to mathematical failures (c.f. Wu and Price, First
Workshop, 1986 and J. Applied Ocean Res., Oct. 1986). The irregular
frequencies appearing in the interior integral equation calculation are
higher than those related to the surface integral equation formulation
because of a reduced area of the interior free-surface bounded by the chosen
artificial interior surface. However, when a modified Green function(3) is
adopted there exist no irregular frequency effects. This may be confirmed
by data given in Fig. 4. In Fig. 4 hydrodynamic coefficients for a rectangu-
lar section derived fromthe surface and the interior integral equations

by means of the modified Green function are presented. Excellent agreement
between the two formulation calculations can be observed and there is no
mathemafical failure due to irregular frequency problem. In addition to

the similar numerical solution stability and accuracy the computing time

required for the surface and the interior integreal equations is nearly the

same.




(ii)

(iii)

(iv)

(v)

CONCLUSIONS

The resultant matrix equation of the interior ihtegral equation can
retain diagonal dominant feature if all the interior field pointsare

arranged close to the body wetted surface.

It is proposed to locate these interior control points on an
artificial interior surface which is close and parallel to the body

surface.

In contrast with the null field equation method which seems free of
irregular frequency effect but may have divergent solutions for
more complicated geometries in practical applications, the interior
integral equation itself can not eliminate difficulties associated
with irregular frequency problem in a higher frequency range but

it may be applicable to arbitrary ship forms and offshore structure

geometries.

In combination with the modified Green function the present interior |
integral equation approach can remove irregular frequency influence
and thus may be applied to a wider range of wave frequencies as well

as body geometries.

Numerical example studies confirm that the present method can be
performed in a totally same manner as the conventional surface integral
equation with the same input data, similar numerical stability

indicated by associated values of a condition number, a similar degree of

numerical accuracy achieved in nearly the same computer time.
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Fig. 1 A circular flat panel on the body wetted surface S together
with a field point P, (0,0,2) exterior (i.e. Z > O) or interior
(i.e. 2 < 0) to the body surface. a is the radius of the panel.
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Fig. 2 Values of the self-induced contribution factor versus the

distance between the field point Pi and a circular panel A‘SQ- of
radius a calculated from eq. (5).
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Schultz:

. Discussion

In your Green's function integral equation, you advocate
smoothly varying the ¢tonstant on the right hand side from

O to 4m as you move from outside to inside the fluid
domain. In the classical approach one goes in discrete

steps O, 27, 41 for outside, on the boundary, and inside
respectively. However, the integral for the 2m case is
principal-valued while the others are not. In your approach,
how do you evaluate the integral in a continuous manner as
the singularity moves into the f£luid domain?

This is the key problem I want to make clear in this study.
From the present discussion one may find that the classical
statement about the jump behaviour of the self-induced
contribution may be somewhat inadequate. The total self-
induced contribution factor as defined by eg. (4) for
general panel geometries or eq. (5) for circular panels
varies smoothly and continuously though as a part of this
total value the contribution from the simple source
singularity exhibits a 41 Jjump wia the body surface as
shown by the second term on the right side of eq. (5).




