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Consider a long circular cylinder which is imm;rsed in an incompressible
inviscid fluid so that its axis lies parallel to the plane of the fluid;
free-surface. If this cylinder is forced to undergo a periodic heaving
motion of small amplitude and we assume that the fluid motion is
irrotational, then the fluid motion may be described in terms of a
potential which satisfies Laplace's equation in the fluid, the linearized
free-surface condition on the mean level of the fluid and a normal
velocity condition on the mean position of the cylinder. When this
cylinder is half immersed the resulting problem may be solved Qsing the
method of infinite determinants. This problem may also be solved using
the theory of integral equations. In this second method the potential is
written as a distribution of wave sources of unknown strength. We find
that this unknown strength satisfies a Fredholm integral equation of the

second kind

H(s) + j p(t) K(s,t) dt = f(s) (1)
s

where pu(s) is the unknown strength, K(s,t) is the kernel of the
equation and f(s) 1is a known function. By using the method of Fredholm
determinants we can show that this integral equation has a solution except
for a discrete set of irregular values of X. (Methods also exist for
removing these irregular values). If the cylinder is, say, more than

half immersed then neither of these methods apply: the geometry is
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not suitable for the method of inifinite determinants and representing
the potential as a Source distribution leads to an integral equation of

the form

a(s)up(s) + N [A1(0) Ki(s,t) dt = Fy(s) (1)
S

where Kj(s,t) 1is singular whens and t simultaneously take values
corresponding to.the point where the cylinder meets the free-surface.
The singular nature of K{s,t) and the presence of a(s) means that we
can no longer use the theory of Fredholm determinants to ensure the
existence of a solution to (II). Similar comments apply to any body
which meets the free surface at an angle other than 90°. In this work
we shall see how by an appropriate modification of our original source
potential we can avoid the difficulties outlined above and de;ive an
integral equation to which the method of Fredholm determinants will

apply.

(It shoula be mentioned here that although the integral equation
(I1) does not admit to the usual Fredholm theory, it has been shown
by Kuznetsov and Maz'ya (1974) that the results of this theory do still
in fact hold. The proof of this assertion relies on some very deep
results from functional analysis and is very terminal: Kuznetsov and
Maz'ya prove the existence of a solution to equation (I1) by considering
the set of generalized solutions to the potential problem which lie
in some appropriate Sobelev space. There is founq to be only one
generalized solution of the problem which is then shown to be the
classical solution we are seeking. The question of how to solve the

integral equation (II) is left unresolved).

The idea behind our treatment of the problem lies in choosing a
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second surface which is inside the cylinder and meets it with the same
slope but different curvature at the free-surface. We shall see that by
taking a distribution of sources over this second surface in addition

to one over the wetted cylinder surface it is possible to derive an
integral equation of the form (I) with a continuous kernel. As
commented above this is equivalent to modifying the source potential in
our original distribution and suggests that‘the usual form of the source

potential :

(x-£)2+ (y-n)2
(x-£)2+(y+n)2

G(x,y;§,m) = % log

du
) ——
cosu (x-%) K

@ -
-2 + o uly+m)
0
is not the most appropriate choice for problems involving bodies which

meet the free surface at angle other than 90°.

Finally this method will be used to calculate added mass and damping
coefficients for the more and less than half immersed circular cylinder

undergoing a forced heaving motion.
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Discussion

Papanikolaou: It seems to me that your added-mass limit is the case of
zero clearance between the top of the cylinder and the
free surface in the case of small frequencies tending
to zero, becomes one, that is it tends to the solution
of the infinite fluid problem. How can you explain the
null effect of the condition ¢, = O for 6 = 0? One
might calculate the added-mass of surface piercing cylinders
by a mixed source-dipole distribution method in a
satisfactory manner despite certain difficulties (see
for example, Takagi, Berkely Workshop, 1983)

Walton: The long-wave asymptotics of the added-mass coefficient
in this problem will take the form
AgnKa + 0O(1)
where A is proportional to (water-plane area)?/ (volume)
for the body. Since the water-plane area for the nearly
submerged body is so small, it is possible that the order
one term will dominate until Ka becomes very small, that
is. smaller than 0.0Ol.

Simon: It is easy to show from the work of Simon & Hulme (1985),
extended to the 2-D case, that, for the partially submerged
cylinder,

A -£(8_){in(Ka) + v} + O(1) and B > mE(8)
as Ka - O, where

.2
8 sin“6.
= = <
EO) = T Tem@ey © <% M-
c c
This function and the corresponding o
values for A & B at Ka = .0l are
tabulated below:
8 /m £(6 ) A(.01) B(.01)

o c

.1 6.00 24 .17 18.85

.2 2.88 11.60 9.04

.3 1.78 7.19 5.61

.4 1.20 4.82 3.76

semi-
. 0.81 3.26 2.55
(submerged >

.6 0.53 2.13 1.66

.7 0.31 1.26 0.98

.8 0.15 0.5% 0.46

.9 0.04 0.15 0.12

Disagreement with Walton's results for 6c > ™ may not be
significant, as the above tabulated asymptotic result for
A(Ka) does not include the O(l) term.

Reference: "The Radiation and Scattering of Long Water Waves"
Symposium on Hydrodynamics of Ocean Wave-Energy Utilization
IUTAM, Lisbon, Portugal 1985,




X.J.Wu:
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1. Generally speaking, numerical computation experiences
indicate that the integral equation yields unique solutions
except at irregular frequencies and the discretised matrix
equation produces convergent solutions even if the inter-
secting angle of the body wall and the free-surface is not 90°.

2. A problem arises from the intersecting point when a
concaved body section intersects the free surface in a small
angle since there exists a logarithmic singularity. Such a
problem has been studied by Haraguchi and Ohmatsu ("On the
improved sclution of the oscillation problem on non-wall
sided floating bodies...", Trans. West-Japan Soc. Naval
Archi., No. 66, Aug. 1983, pp.9-23) and followed by Takagi
et al (Workshop Ship and Platform Motions, Berkeley, 1983).

3. This singularity problem may be eliminated by some
practical modifications, for example, Haraguchi proposed a
method rather similar to that discussed by Walton but adopting
additional elements on the free surface connected with the
intersecting points. They investigated a circular section

in various draft values and found their methods effective.

4. From the physical point of view, it is not reasonable to
apply a linear wave theory to a very shallow layer of flow above
the body wall slope because the non-linear effect may be dominant.

5. Thus one can only rely on comparisons with experimental
data. In comparison with the model testing data Takagi et al
found that

(a) Haraguchi's computational results considerably differ from
the experimental measurements,

(b) a modified Green function technique. incorporating with a
slightly changed geometry by substituting the inter-
secting part with a small arc may give more satisfactory
answer.

6. With these points in mind, there may be no numerical
problems to apply existing numerical techniques and computa-
tional programmes to arbitrary body sectional geometries
X.J. Wu, CADMO 86, Sep. 1986, pp.223-235, Springer-Verlag).

7. In our computational experience additional ill-
conditioning frequencies have been found apart from the two
identified groups (i.e. the resonant frequencies due to the
exterior water waves and the irregular frequencies related to
the interior problem). The reasoning is not clear and these
seen no effect on the calculated results.




