i

'l"‘,

o L] L

,,,,,

THE EXCITING FORCE AND MOMENT IN LONG WAVES

by J. N. Newman
MIT, Cambridge, Mass., USA

In the prediction of wave-body interactions it is possible to simplify the analysis of the ex-
citing force by making a long-wavelength or low-frequency approximation, which is applicable
if the pertinent body dimensions are small compared to the wavelength. Morison’s formula is
an important example where, in the absence of viscous drag, the exciting force is approximated
by the product of the incident-wave orbital acceleration and an inertial coefficient equal to
the sum of the fluid mass displaced by the body and its added mass in an unbounded fluid.
The basis for this approximation is the relation
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for the force component acting on a stationary body in the difection #, due to any external
flow field with potential ®(x,t) and velocity components u;. The fundamental assumption
is that ®(x,t) is slowly-varying in space, relative to the length-scale of the body. In (1) the
added-mass coefficients are denoted by m;; and ¥ is the fluid volume displaced by the body.
In two dimensions ¥ is replaced by the displaced area. The summation convention is implied,
with the indices 7, k taking the values 1,2,3 (1,2 in two dimensions). The index 1 is restricted
similarly, and (1) cannot be used to find the hydrodynamic moment.

In many practical problems it is desirable to have a similar approximation for the hydro-

~ dynamic moment. For example, studies of the capsizing of small vessels in large waves focus

on the rotational motion of the vessel, in response to hydrodynamic and inertial moments.
The direct solution of such problems is extremely difficult, due to the importance of nonlinear
effects, and the possibility of a long-wavelength approximation is appealing. This was the
original motivation for the present work, which extends the first member of (1) in the context
of the linearized exciting force and moment.

Before addressing this problem directly, we recall another fundamental relation from
potential theory which states that the velocity potential ¢;, for forced motion of the body
with unit velocity, can be approximated in the far field by three orthogonal dipoles,
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In two dimensions the source potential 1/4xr is replaced by —1/2xlogr. The mode of body
motion is arbitrary, including rigid-body rotations as well as translations, but the dipole mo-
ment vanishes for rotations about the principal axes and (2) provides no information regarding

the remaining quadrupoles which dominate the far-field approximation for rotational modes.

Relations similar to these are discussed extensively by Landweber and Yih (J. Fluid
Mech., 1, 319-336, 1956), with special attention to the “missing relations” corresponding to
the extension of (2) to “pure rotation”. For such modes it is shown by Landweber and Yih
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that the added moment-of-inertia for a general body shape cannot be related in such a simple
manner to its effective singularities.

Hereafter F; denotes an arbitrary scalar component of the force or moment, and ¢; is the
“radiation” potential for forced motion in the corresponding mode of translation or rotation,
with unit velocity, in the absence of an incident field. With ® the incident-field potential,
the total “diffraction” potential including the body disturbance is ® + ¥, and the linearized
pressure force or moment is given by

R=-p3 [[@+9pnds=p % [[(@pn - gi0n)ds (3)

where the integrals are over the body surface and th_e subscript n denotes the normal deriva-
tive. (The last equality follows by applying Green’s theorem to the term involving the body
potential ¥, and invoking the boundary condition ¥, = —®,.)

The next step in the analysis is to expand ® in a Taylor series about the origin of the
body. Adopting a symbolic notation,
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Here I*) and V"® g, are multi-dimensional vectors. I(") is defined by the corresponding
surface integrals in (4), and depends only on the body geometry and forced-motion potential
#;. The time-dependent vector V*®o) involves n’th-order derivatives of the incident-flow
potential, evaluated at the local origin of the body. Since the body is stationary, and ¢;
is independent of time, V”®) is the only time-dependent component of (4). These two
vectors represent respectively generalizations of the corresponding factors (m;;/p++§;;) and
9%®/dz;dt in equation (1).

Equation 4 is the desired result, which can be applied to find the moment, as well as
the force, acting on a body in a slowly-varying external flow. Before making this application,
we shall generalize (2) and derive the complete multipole expansion of the forced-motion
potential ¢;. The reason for-this digression is that the duality between (1) and (2) extends
more generally to the complete multipole expansion and (4).

From Green’s theorem the potential ¢; can be expressed in the form
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The inverse of the distance R between the source point £ and the field point x can be expanded
in an analogous Taylor series, when the field point is sufficiently far from the body, and the
result is the multipole expansion
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where the dummy variable is changed from £ to x in the last integral. Apart from the
factor (—1)", the coefficient of each partial derivative (of the source potential 1/4xr) in this
expansion is identical to the coefficient of the same partial derivative (of the external flow
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potential ¥) in the expression (4) for the force or moment. Thus the duality reflected in the
form of (1) and (2) extends to the more complete expansions (4) and (6), and the force or
moment due to the external field can be expressed in terms of the multipole coefficients of

- the corresponding forced-motion potential ¢;. Similar dual relations can be derived involving

spherical or cylindrical harmonics, since the vector operators in (4) and (6) can be converted
directly to such forms.

To illustrate this approach with a simple example, consider the rolling moment on a
submerged ellipse with horizontal semi-axis @ and vertical semi-axis b. For forced rolling
motions with unit angular velocity, in an otherwise infinite fluid, the potential is given in
elliptic coordinates by
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where z + {y = cosh(u + 16) (cf. Lamb, §72, eq. 7). In the far-field the leading term in an
asymptotic expansion of this potential is the quadrupole
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If the ellipse is submerged, with its center at a depth h below the free surface, and plane
progressive waves propagate in the +z direction, the external-flow potential is given by

o= g;e—kh-;—ky—ikzuut (9)

where the real part is understood. Using this result with (4), (6) and (8), it follows that the
roll exciting moment in long waves is approximated by
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Note that the quadrupole coefficient in the second form of (12) appears in (14). This coefficient
differs from the added moment-of-inertia of the ellipse by the factor (a+ b)/(a — ); hence the
quadrupole coefficient and exciting moment change their signs if the major and minor axes
(a,d) are interchanged, wheras the added moment is not affected.

As a three-dimensional example, consider a prolate spheroid with horizontal axis, semi-
length @, and maximum radius b. If spheroidal coordinates are defined by = = ccosh ucosé,
y+ iz = csinh usinfe'®, the velocity potential for rotation of the spheroid about the z-axis is
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¢s = CP; (cos)Q} (cosh ) cos o = —2C P} (cosf)(cosh )% cosa = 2C¢?
where P and QT are the associated Legendre functions, the constant factor C is defined by

d
C=-%i /Elzo_Qé (cosh po) (12)

and @ = ccosh pg, b = csinhpy,. Comparing (11) with (4) and (6), and using (9), it follows
that the pitch moment on a submerged spheroid is approximated in long waves by
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With the additional approximation that the spheroid is slender (b << a), C =~ — 17 and (13)
reduces to :

FB ~ __Bl_rsr pgAk2aab'ze—kh+iwt (14)

The last result can be derived from strip theory, using (2) to find the vertical force at each
section and expanding (9) in a Taylor series about z = 0.

So far free-surface effects have been ignored, except for the incident-wave system. The
same basic approach can be applied to floating bodies, or submerged bodies close to the
free surface, but for (3) to be exact the potential ¢; must satisfy the free-surface boundary
condition. (In this case (3) is essentially equivalent to the Haskind relations.) Nevertheless,
some simplified asymptotic results for long wavelengths can be obtained by noting the low-
frequency approximation of ¢;. For horizontal modes of translation and rotation about the
vertical axis, the low-frequency limit of this potential is identical to that of the double body,
and the synthesis used above for submerged bodies can be followed. With a multiplicative
factor of one-half to account for the submerged portion of the double body, the yaw moment
on a prolate spheroid which floats with its axis in the free surface is

Fg =~ 428 59 Ak?Cc® cos Bsin et 15
)

(Note that z is now the vertical axis, and § denotes the angle of the incident waves relative
to the +z axis.) The corresponding slender-body limit is

Fg ~ 41—’? pgAk®a®b? cos Bsin fe'? (16)

The last result also can be confirmed from strip theory, using the long-wavelength approxi-
mation for the sway exciting force on a floating circular cylinder which follows from (1).

It should be emphasized that the slender-body approximations in (14) and (16) are intro-
duced only to verify the agreement in these limits with strip theory. The more general results
(10) (13) and (15) are valid without the assumption of slenderness, and cannot be derived
from (1).

The duality between the expansions (4) and (6) is illuminating, and useful in cases such
as the examples above where the multipole expansion can be derived analytically. For more
complicated bodies (4) can be used directly with the surface integrals evaluated numerically
from the double-body potential.

Different results follow for the vertical modes of motion of a floating body, because of the
opposite phase of the image above the free surface. For example, the forced-motion potential
corresponding to pitching motion behaves in the low-frequency limit like a dipole, instead
of a quadrupole. The corresponding contribution to the pitch exciting moment is simply
hydrostatic. More complete expansions for both horizontal and vertical modes can be studied
by including higher-order terms in the low-frequency approximation of the forced-motion
potential ¢;.

This work was supported by the National Science Foundation and by the Office of Naval
Research.




3

-

C

L i

-

Grue:

Néwman:

Pawlowski:

Newman:

87

Discussion

In the presentation approximated values of the exciting moment
on a submerged body arée derived under the assumption that

the bedy is deeply submerged. Often this approximation can

be valid even though the body is rather close to the free
surface. Can you quantify the ratio between the submergence
of the body and its horizontal dimensions when this
approximation is good, for instance for a very slender body?

As Dr Grue suggests, the results from analytic solutions reveal
that the "deeply" submerged approximation remains valid if

the body scale 2 1is comparable to the submergence depth h.
In many cases a limit such as h > /2 may be sufficient.

The appropriate choice of & is less clear, for a body with
disparate length scales. For a slender body it is permissible
to take & as the smaller transverse dimension. More generally,
it may be that £ must be a length such that the scattering.
effect of the body -0 as £ -+ O.

I would like to remark that there is an approach to the
computation of forces induced by an incident potential, which
results in formulae involving added mass and damping (for
bodies above to free surface) coefficients, including added
moments of inertia in angular motions. In that approach (I
call it "equivalent motion") the body disturbance potential
is approximated by a series of radiation potentials with
unknown speed amplitudes which can be determined from the
impermeability conditions on the wetted surface of the body,
understood in least-squares sense. In the approximation
radiation potentials corresponding to other modes of
distortion of the wetted surface can also be added or used,
as long as they remain linearly independent, and therefore in
principle an arbitrary accuracy of the flow modelling can be
established.

If the normal velocity induced on the body by the incident

field is expanded in a set of modal functions it is certainly
possible to relate the scattering potential and exciting force
to the corresponding expansions. However, it must be emphasized
that higher-~order modes (corresponding in the long-wavelength
approximation to a pure strain of the body) are required to

find the exciting moment, and the latter cannot be found in that
approach from the potential due to rigid-body-rotation and
corresponding added moment-of-inertia.

The essential point of my paper is that, although the rigid-
body potentials are not sufficient to represent the scattering
field, the gquadrupole moment of these potentials is sufficient
to determine the exciting moment.




