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Recent work by Eatock-Taylor and Hung (1] concerning mean
drift forces on multi~column structures has shown that interaction
effects between structural elements may be very important at low
frequencies. Their numerical results suggest that for certain
geometries the horizontal drift force on a group of N bodies may be >of
the order of N2 times the force on a single body when the incident
waves are long compared to the overall body size. In the present
work this behaviour is investigated analytically. In particular, the
long wave limit of the drift force is considered for an array of
vertical cylinders extending throughout the v;'ater depth and for an
array of hemispheres floating on water of infinite depth.

As is well known, the mean horizontal drift force on a body may
be calculafed from the far’ field form of the linear diffraction potential.
Here the linearised problem of the scattering of long waves by an
array of bodies is solved using the method of matched asymptotic
expansions under the assumptions that g = kL << 1 and = = a/L << 1,
where k is the wavenumber, L is a typical body spacing and a is a
typical body radius. In addition, it is assumed that the total
horizontal extent of the array is restricted to be much less than the
wavelength, thus the present theory does not apply to ‘tinfinite'
arrays.

The solution procedure follows that used by Balsa [2,3] in work
in acoustics on low frequency flows through arrays of bodies. Three
flow regions are distinguished: an outer region at large distances from

the array where the length scale is k~!, an intermediate region within
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the array, (but not 'close' to any body), where the léength scale is L
and an inner region adjacent to each body where the length scale is
a. In the outer region the scattered wave appears to be the result of
si‘ngt'.xlarities at a single origin whilst in the intermediate region the
disturbance appears to be generated by singularities within each
body. The velocity potentials in each of the three regions are
expanded in terms of gauge funct;ions in g4 and the outer and
intermediate e_xpansions- matched so that the leading order outer
solution is determined in terms of constants in the intermediate region.
The potentials in the intermediate and inner region are further
expanded in terms of gauge functions in £, The body boundary
conditions are satisfied in the inrier regions and matiching determines
the intermediate solution and hence the outer solution. The final form
of the far field potential is a double expansion in u and =.

To demonstrate the interactionn effects, the ratio F(2) of the drift
force in the direction of w'ave ‘advance on N bodies to the
corresponding force on an isolated body is calculated. For an array

of identical vertical cylinders
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where g is the direction of wave advance and (Rnp, “np) are the
(horizontal) polar coordinates of body p relative to body n. Thus the
drift force on N cylinders is N? times the wvalue for an isolated
cylinder only in the limit as = f.ends to zero. The existence of the
O(e2?) term 1is consistent with the calculations for two cylinders

presented by Eatock-Taylor and Hung [l]; for two closely spaced




cylinders with the line of céntres perpendicular to the direction of
wave advance their results show further drift force enhancement 6ver
and above the NZ?*-fold increase. It is interesting to note that the
O(z2?) term is identically zero for a number of specific geémetrieé.
This includes any number, (> 3), of cylinders at the vertices of a
regular polygon,_irrespective of the direction of wave advance and a
pair of cylinders with their line of centres inclined at an angle of n/4
to the direction of wave advance. The sign of this term may change
with the orientation to the direction of wave advance. For example,
for two cylinders aligned with the wave direction,

lim F(’) = 4(1 - 6s°/5 + 0(s"))
lJ,-B'O

whilst when their line of centres is perpendicular to the waves,

lim F2) = 4(1 + 6:2/5 + 0(:*))
;1,-)0

Thus, interaction effects are stronger in the latter case.

For an array of identical floating hemispheres

1im F(P = ¥

M =3 0
exactly. The difference in these two results is related to the
scattering properties of an individual body. For long waves, the

leading order far field scattering potential for a vertical cylinder is a
combination of source and dipole terms whereas the corresponding
potential for a hemisphere has only source terms. The latter form of
" the potential will be approximately wvalid for most floating bodies,
provided the water is not too shallow and so an N? drift force
enhancement is likely with small higher order interaction effects

relative to the cylinder case.
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Discussion

Hung: Dr McIver suggested that given the assumption of body size to
separation ratio, the Kochin function Q(9) of a group of
bodies is the sum of that of individual bodies. Is there any
justification for this? I am of the opinion that instead of
saying (L(8) ~ N(8) we should write |Gee) | ~ N[Q,l (8) |
noting that {U6) ~is usually complex.

Reference

R. Eatock Taylor and S.M. Hung, Wave drift enhancement effects
for semisubmersible and TLP systems, 1986 OMAE, pp.273-280.

MclIver: Certainly for the geometries considered 0oy is pure
imaginary to leading order so that it is sufficient to write
(6) ~ NG, (8). 1In general, of course, the discusser is quite

correct.




