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Numerical Problems of First Order Diffraction Theory

E.R, Jefferys, Conoco (U.K.) Limited

First order three dimensional diffraction theory 1s embodied in many
programs which can calculate hydrodynamic coefficients for bodies of
arbitrary geometry. In the hands of their creators, these programs usually
perform well and generate plausible coefficients which compare well with
analytic predictions for very simple shapes. Resulting motions correlate
well with experiment, particularly for voluminous, convex bodies such as
barges and wave energy devices where viscous effects are not important.

This does not seem to be the case for semi-submersible and TLP structures,
A survey for the ISSC, republished in Ref. 1 demonstrated significant and
disturbing variability between the hydrodynamic coeff-icients, motions and
forces predicted for- an example TLP by 17 diffraction programs. Figure 1
shows typical results for surge--added mass, damping and exciting force
amplitude. The values, particularly of added mass, seemed to change
significantly with the level of discretisation but not all partic-ipants
supplied their panel model.

The ITTC Ocean Engineering committee has compared experimental results,
strip theory and diffraction results for an example vessel; the three
diffraction programs also seemed to overestimate added mass (ref. 2),
leading to longer natural periods than Morison or experiment predict.
However not all the discrepancy seems explicable by modelling errors (Priv.
comm. R.G. Standing) of the type discussed below.

Further investigation within Conoco has yielded more detailed information;
this note compares hydrodynamic coefficients from four different programs,
each using a significantly different discretisation of another TLP. There
are three panel representations of 240, 484 and 992 facets and one which
uses a quadratic finite element model of the fluid near the structure.

Figure 2 shows normalised values of added mass and damping, modulus of
exciting force and response in surge. The more 'accurate' representations
generally yeild smaller values of added damping and exciting force. All
the hydrodynamic coefficients are reasonably consistent and display similar
features; note in particular the strong 'slop' mode shown by the added
mass and damping curves. Added mass in all modes decreases with increasing
number of facets, N and the quadratic program displays a still lower added
mass. The added mass at infinite frequency is most significantly affected
and the variability about M(eo), the mean value is more consistent. If the
mean value of the added mass is removed, the behaviour of the frequency
dependent part is similar to that of the added damping. Note that the two
highest frequency points of the 240 panel curve were computed with a
680 panel representation, so the added mass drops to just below the 484
panel curve,

Table 1 summarises the added mass values in all degrees of freedom at low
frequency. An 'error' has been evaluated based on the assumption that the
quadratic results are correct; errors are fairly consistent from one mode to
the next. Roll and pitch are pontoon dominated; this may account for their
rather bigger discrepancies. Heave added mass is a very weak function of
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frequency as all the relevant parts of the structure are well submerged; it
is also easy to check by naive 2D theory on the assumption that interactions
will be weak, Assuming an appropriate added mass coefficient for the
pontoon (Sarpkaya and Isaacson ylelds M = 0.96 V) and using the 'capping
hemisphere' approximation for the column ends gives a heave added mass of
1.03 times that of the quadratic program which lends some credibility to the

idea that it is right and the others are wrongl Similar calculations can be
made for added mass in surge.

Figure 3 shows a log plot of heave added mass ‘'error' versus number of
panels; one of the programs was run with 240 and 680 panels at high
frequency. Obviously it would be unwise to fit a striaght line through the
points and extrapolate but spot checks on free floating heave natural period
for another TLP model indicate that interpolation is reliable.

In two dimensions, it is found that 16 to 18 'facets' are needed to model a
submerged pontoon accurately. If the corresponding panel side of 2.5 m were
chosen, the TLP would be represented by some -2800 facets. This is three
times the number used in the most detailed panel model and would increase
the computing cost by a factor of between 9 and 27 depending on the balance
between forumulation and solution time in the program. Consultants often
say that they choose their panel size to be less than one seventh of a
wavelength; this 1s why the 240 panel study was re-run with 680 panels at
high frequency. This rule of thumb seems difficult to justify since the
differences between the programs are relatively independent of frequency.

Displacements in the inertia dominated modes are predicted consistently by
all the programs since the larger added masses tend to be balanced by the
larger exciting forces. At all frequencies above their (slow) resonant
periods, semi-submersibles respond in an inertia dominated fashion so these
errors may not be too important.

In the spring dominated modes whose displacements determine the tether
tensions, the motions and tensions follow the exciting forces. On a design
wave basis the difference between the highest and lowest tension RAO's
translates into some 4500 tons of pretension hence 4500 tons less payload or
roughly 13500 tons more displacement ip a 60000 tonne vessel. A stochastic

design tends to smooth out the differences but they are still of the order
of 20Z of pretension.

This 1is not an advertisement specifically for finite element methods.
Higher order boundary element methods may do just as good a job. And the

developer of the quadratic program is as yet wunwilling to assert
categorically that everyone else is wrong.

Some questions are prompted by these results.

1) Do panel programs always provide an upper bound for added mass?
Do finite element programs follow this 'rule'?

2) The Greens function is very simple at infinite frequency. Can we
calculate M(oo0) accurately and adjust everything else? What about

added damping? Can we adjust the 'inertial' part of the exciting
force?

3) Are zeroth order panel methods guaranteed to converge monoton-
ically to correct answers as N < eo?
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Finally, it is important to emphasize that viscous forces make an important
contribution to the TLP response in large waves; inclusion of Morison drag
has a significant effect on the tether tension RAO's and it seems likely
that the relatively unimpressive correlation between theory and model test
is caused by other viscous effects which are not yet fully understood (ref.
3). These differences are certainly significant from the 'scientific' point
of view and the margins they i1imply add to the cost of platforms by
increasing pretension margins for 'prediction error'. Clearly, first order

wave loading 1s by no means a solved problem, even in the diffraction
regime!
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Program Surge Sway Heave Roll Pitch Yaw
DM/M DM/M DM/M_ DM/M DM/M DM/M
z ° 7z ©° z ° z ° z ° 2 °

240 51.9 50.26 54,6 61.5 60.5 48.1

484 30.9 34,80 37.0 46.1 39.2 32.6

992 25.4 25.9 24.4 35.2 32.5 23.6
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Table 1

Added Masses Variations

at high frequency
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Discussion

Dr Jefferys posed a question in his abstract about whether
plane/piecewise-constant panel methods for radiation-
diffraction problems converge in the limit as the number

of panels N tends to infinity. I believe it is possible

to show, and experience suggests it, that this discretization
does indeed converge (in some cases quadratically) if the
singular components of the Green function are handled
consistently and carefully. The Green function is singular
like 1/r near the location of the source and its image
above the free surface. An additional singularity of
logarithmic nature is alsoc present at the source image. All
three singularities need to be integrated analytically over
the panels, should they lie close to the source or its image,
to ensure the convergence of the velocity potential pointwise
on the body surface and on the water line. The remaining
regular wave part can be integrated by quadrature. We have
found that centroid integration is sufficient.

The dependence of the solution on the number of panels could
be reduced by using, "patches" as was recently done by

Dr B. Okan at BMT. This procedure shows that more efficient
computations and higher accuracy can be obtained by insisting
on the continuous distribution of "sources". It will be

very interesting to see how this procedure works and compares
for your geometry.




