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While the calculation of second order forces on bodies in waves
has been a subject attracting interest for some years, many of the results
published so far have been concerned with the time independent components,
or time harmonic components neglecting all or part of the contribution due
to the second order velocity potential. Further, some of the few published
3D solutions of forces due to the second order potential are based on
dubious theoretical grounds and have been the source of much controversy.

An analytical second order solution of the time harmonic forces on
a fixed surface piercing cylinder in a regular wave has recently been
given by Eatock Taylor and Hung [1]. Here, particular attention will be
paid to the extension of this work to arbitrary bodies free to move in a
bichromatic sea, where forces of both sum and difference frequency
components exist.

A suitable method of solving for the forces resulting from second
order velocity potential is that due to Lighthill [3]. Essentially, we
make use of Green's second identity in transforming a body integral of the
unknown second order diffracted potential to integrals on the body and
free surface, noting that these integrals have integrands that can be
expressed as functions of the known first order solutions. The forces may
therefore be obtained without solving for the second order diffracted
potential at all.

Although theoretically the solution then appears relatively
trouble free to obtain, in practice a major obstacle arises in ensuring
the convergence of the free surface infinite integral. Other problems also
exist. For instance, when the body is free to move, one of the integrals
on the body surface has an integrand that contains the double spatial
derivative of the first order velocity potential. In both of these cases,
special attention must be paid to the development of fast and accurate
numerical solutions.

The numerical implementation of our second order solution is based
on a post-processor to DYHANA, a suite of diffraction programs ([2]
developed in UCL. Since there is a choice in choosing between two hybrid
element methods ( Boundary Integral Element (BIE) method and Boundary
Series Element (BSE) method ) for solving the first order diffraction
problem within DYHANA, one of the requirements of the post-processor is
that it must be compatible with data generated by either method.
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To evaluate the free surface integral, for example, different
treatments are required for the BSE and BIE data. In the BSE idealization,
the body in question 1is always surrounded by a 3D finite element region
with a vertical cylindrical exterior boundary. In this situation, the
integral 1is performed by 2D quadrature within the boundary, but it is far
more efficient and accurate to perform the surface integration outside the
boundary by first integrating explicitly in the azimuth angle, followed by
numerical quadrature along a radial 1line. It has also been found
advantageous to use the procedure [l] of representing the semi-infinite
radial integral by two parts; quadrature within a finite range plus a
residual term representing the integral to infinity. This last integral to
infinity is evaluated by employing only the leading order terms of the
large argument asymptotic expansion of the integrand, which may then be
reduced to a Fresnel integral and calculated explicitly. ’

In the BIE method, an additional step 1is required for the
integration on the free surface, since the body is enclosed by 3D-box
shaped finite element regions. To evaluate the free surface integral, a
fictitious wvertical cylindrical boundary is constructed enclosing all the
finite element regions. The first order wvelocity potential is then
evaluated on this cylindrical boundary. By use of the orthogonality of the
eigenseries in the azimuth and depth, the coefficients to the eigenseries
of the first order velocity potential are obtained and thus the surface
integral outside the cylindrical boundary can be performed as in the BSE
method. Within the cylindrical boundary, the free surface integration is
obtained by numerical quadrature.

It has been found that with this application of the BIE method,
the fictitious cylindrical boundary must not be too close to the finite
element region. This is due to the discontinuity in the integral when the
source point is moved onto the surface on which the integral equation is
written. It is possible to avoid this problem by making modifications to
the Green function, as shown by Noblesse [4], but this has not yet been
implemented in our solution.

Another potential difficulty which has concerned us 1is accurate
evaluation of the body integral term containing the double spatial
derivative of the first order velocity potential. This contribution to the
second order force arises from one of the correction terms in the Taylor
series expansion of the body boundary condition. We found that despite the
employment of quadratic finite elements, convergence of the results was
poor because of the error in these second derivatives. By use of Stoke’s
theorem, however, it is possible to express the integral in an alternative
form, which involves a modified body integral and an integral around the
waterline and intersection with the sea bed. In this way, convergent
results for the force have been obtained without the requirement of a very
fine mesh on the body surface. .

Results given in [1] show that in regular waves the contribution
of the second order potential to the double frequency second order drift
force can be large. In particular (contrary to some suggestions published
elsewhere), the force may not be reasonably approximated by neglecting the
term due to the free surface integral. Also illustrated by those results
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is the phenomenon of the double frequency force converging more slowly
than the first order force with increase in water depth and submergence.
It is evident that if the difference frequency 1is small, the same

behaviour can be expected in the sum frequency force component in
bichromatic waves.

The behaviour of the low frequency component, however, is less
obvious. Although the second order velocity potential does not contribute
to the mean horizontal forces, the influence of components at non-trivial
difference frequencies is of great practical importance in the assessment
of low frequency responses of compliant systems. An exact solution,
however, does not appear to have been published previously for 3D bodies.
From our preliminary results, we find that while approximations can give
good agreement to the forces when the average frequency is high and the
difference frequency 1is low, the contribution due to the second order
velocity potential can be very significant in other circumstances.

In some situations, it has also been found that when only part of
the second order potential is used in the calculation, (for example the
second order incident potential has been included by Standing et. al. [5])
serious errors in the forces may arise.

Nondimensional results are given below for the surge quadratic
transfer function H(w,w+Aw) of a hemisphere of radius a in water of depth
3a. The BIE 1idealization using a mesh of 20 quadratic elements is also
shown. It may be seen that the various approximations either over or
underestimate the results based on the complete second order potential,
depending on the frequency components w and Aw.
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NONDIMENSIONAL LOW FREQUENCY QUADRATIC TRANSFER FUNCTION OF A HEMISPHERE IN SURGE
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Results are non-dimensionalised by pgaA where A is the incident wave amplitude

Within each box, the results are:

1: excludes contributions due to second order potential

2: includes contribution due to second order incident potential
3: excludes free surface integral

4: complete
1.
2
3

Column

: in phase component
. out of phase component
: amplitude

Line

l BIE MESH OF A HEMISPHERE J
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Authors' further comments

It is our view that it should also be possible to employ our
present method to calculate the second order velocity
potential without approximations. The key lies in the
definition of the assist potential (the radiation potential

w(l) as denoted in [1]). For example, if we require the

second order velocity potential on a particular facet on the

_ (1) o aw(l) -
body, we shall define ¥ by specifying 5 = 1 on that

ay (1)

facet, and Py = 0 on the others. We then carry on as

usual to evaluate the second order force, which, of course is the
force on the facet alone. Subtracting the second order forces
due to the first order potential and motions from this force,
and dividing it by -ipwA where w is the second-order wave
frequency and A 1is the facet area), the second-order potential
is obtained. Compared with direct methods for the calculation
of the second-order velocity potential, this new route is

likely to be far more cost effective when the potential is
needed only at a few locations.




