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The Boundary Element Method (BEM) is now commonly used
as an efficient and accurate numerical technique in many
applications in engineering practice and mathematical physics. It °
is ideally suited to the study of the free-surface flow problems
and those of floating bodies. The method, originally devised for
the solution of linear two- and three-dimensional potential and
elasticity problems, has now been refined and extended to cover
more complicated ones such non-linear, time—dependent and
transient problems. The method consists of the transformation of
the governing partial - differential equations for +the wunknoun
within and on the region of interest to an integral equation over
the boundary of the domain, and the sclution of these equations
for functions on the boundary alone. If values at interior points
are required, they are calculated afterwards from +the boundary
data. The advantage of using this form of numerical formulation
is that it can also deal with three—-dimensional  problems. The
boundary integral equation method based on the Cauchy integral
theorem cannot be extended to three—dimensional problems since
the complex potential function exists only in a two-dimensional
space.

This contribution presents the point collocation BEM for
two-dimensional potential problems with particular attention to
the analysis of non-linear water wave problems and the study of
the interaction between the free surface and solid boundaries.
The problems are formulated mathematically as two-dimensional,
non-linear, initial-boundary value problems in terms of a
velocity potential, assuming the fluid to be inviscid and
incompressible, and the flow to be irrotational.

The integral equation is formulated through the
application of Green’s third identity which represents an
harmonic function as +the superposition of a single-layer and a
double-layer potential. Taking the field point to the boundary,
an integral equation relating only boundary values and normal
derivatives of the harmonic function is obtained.

Let #(p) and the function G(p,q) represent the unknown
harmonic function and +the fundamental solution to Laplace’s
equation respectively. The boundary integral equation is thus

Zng(p) + f #(Q)oG(p,Q) dAr(Q) = J' o8| G(p,Q) 4dr(Q)
on(Q) én
r r Q

Let the interior point p(x) be taken to a boundary point
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P(x). The function #(p) is assumed continuous so that &(p) > -
g(P). The second integral in the above equation is also
continuous if 6#/6n is bounded. The first integral contains a .
double-layer potential with density #(Q) and this potential has a.
jump of -m in going from p(x) to P(x). Thus, in the limit, this
equation becomes,

n#(P) + [ #(QISG(P,Q) dr(Q) = [ G(P,Q)d%

dar(Q)
én(Q) on
r r _ Q

This equation states that a constraint equation betuween
the Dirichlet ©boundary conditions and the Neumann boundary |
conditions must be satisfied for all harmonic functions. This
constraint equation is the so-called boundary integral equation
which is the basis of this work. If the solution to the Neumann -
problem is desired, the right-hand side of this equation is known |
and a Fredholm equation of the second kind for the unknown -
boundary values of the function, #(Q), 1is obtained. If g(P) is
known, i.e. the Dirichlet problem, then this equation becomes a
Fredholm equation of the first kind for +the unknown boundary ;
values of 6%/6n. The mixed boundary value problem, i.e. the
Cauchy problen, leads to a mixed integral equation for +the -
unknown boundary data.

For the numerical implementation, the variations of ¢ and
6#/6n are assumed to be linear within each element. The use of
such elements has proved to be stable numerically for certain
non-linear water wave problems and for the cases to be presented
it was not necessary to use any smoothing procedure since there -
was no detectable growth of numerical instability. Higher order |
elements, however,. were found to exhibit instability and these °
had to be suppressed by the use of smoothing functions. One .
apparent disadvantage of the BEM over the other numerical
techniques, notably the finite element method, is the inherent .
presence of singularities in the numerical integration. However,
this is not a major problem as the numerical techniques for '
evaluating the singular and non-singular boundary integrals have
been developed. When +the ‘boundary r of the boundary integral

domain © has one or more geometrical corners, problems are also .
encountered owing to the discontinuous nature of the normal
derivatives o6#/4n. Such problems also exist at the fluid-body -
intersections, but techniques have been developed to give

accurate representations in such regions.

For the time-stepping procedure, fluid particles on the
free surface are followed. The position and the velocity
potential of these points are obtained by integrating in time the
kinematic free-surface boundary condition which stipulates that
the free surface is a material surface. The advantage of using
the Lagrangian description for +the fluid motion is +that the
position of the free surface 1is known. This means that when
solving the problem of free surface flow, only the equations, and
not the boundary, need to be approximated. However, for steady-
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state flow and +that involving a small wuniform current in a
transient flow, the semi-Lagrangian scheme for the description of
the fluid motion, where particles are restricted to vertical
movement, is deemed necessary so that particles. do not all
translate downstream. The development of the flow is obtained by
an explicit time—-stepping procedure in which +the flow at each
time step is calculated by the BEM. Three different time-
stepping schemes were used and the only difference between then
was the time taken for each iteration or time-step. For
equivalent solutions using linear elements, otherwise identical
calculations took 1.81 CPU seconds on the CDC Cyber 205 for the
second-order Euler predictor and Runge-Kutta corrector scheme,
2.1 seconds for the fourth-order Adams-Bashforth predictor and
modified Adams—Houlton corrector method and 1.89 seconds per
time-step for the truncated Taylor series. "Incomplete"
solutions, whereby the boundary-integral kernels are unchanged
(assuming a nearly flat surface), were also used because they
were numerically efficient. The respective figures for such runs
were 0.41, 0.47 and 0.81 seconds.

Simple-harmonic flows using a wavemaker similar to that
used by Lin et al (1984) were investigated in order .to assess the
numerical method and its stability characteristics. Without any
smoothing, results for the non-linear motions were in reasonable
agreement with other numerical solutions and -equivalent
experimental observations.

Impulsively-started flows were investigated as a prelude
to the study of wedge-entry problems. The numerical results
based on the BEM were compared with Peregrine’s analytical
solution and were found to be satisfactory for discretisation of
the ©boundary based on _constant element spacing on the free
surface. Agreement was improved for discretisation based on an
exponential spacing on the free surface giving smaller element
spacing close to the intersection, although the solution becanme
divergent earlier as the local element size was decreased. This
was thought to be due to the problem of matching either a dynamic
or kinematic boundary condition at the intersection between the
wavemaker and the fluid surface. Similar problems were also
encountered with wedge entry into (initially) calm water. For a
half-apex angle of up to 30°, good comparisons were obtained with
known analytical results for zero gravity. However, beyond that
angle, problems with numerical instability and slow convergence
became severe. It would appear +that the potential-flow
approximations give good results at a small distance from the
intersection between the wedge and the free surface but not at
the intersection itself. It is felt +that +the potential-flow
assumption is an over-simplification at this point.

The problem of a floating body of radius a and incident
wave amplitude A was also dealt with for A/a ratios up to 0.8
where substantial non-linear effects are clearly present. It uwas
found that reasonable agreement with ‘"reliable" experimental
results was obtained for a solution using the fully Lagrangian
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déscription of fluid motion. The variations of wave frequency and
the body dimensions were also investigated.

A small wuniform current was subsequently introduced and -
its effects were studied. For this case, a semi~Lagrangian
scheme was used. Initial wvelocity potential values and free
surface profiles were obtained from an iterative procedure giving |

steady-state results and the wavemaker at one end was then
imposed as before.
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