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NONLINEAR IMPULSIVE PROBLEMS

R. Cointe (IFP), A. Jami (LNH) & B. Molin (IFP).

Introduction

Hydrodynamic loadings acting upon ocean structures have classically been computed using linear
theory. Even if second order approximations exist or are being developed, the limitations of linear or
weakly nonlinear models are now recognized in many situations, and especially for the prediction of the
behavior of floating ocean structures in extreme waves.

With the availability of supercomputers, approximate methods have been developed to solve
nu‘mer‘icany the exact nonlinear equations in the time domain !. Even though these methods are still time-
consuming and therefore limited to two-dimensional or axisymmetric flows, remarkable results have
been obtained, for instance for the prediction of overturning.

However, difficulties remain. In par'ticular when free surface piercing bodies are present, the
behavior of the flow in the vicinity of the waterline is still far from being understood. We believe that
this problem should be analyzed mathernatically prior to develop any reliable numerical algorithm to
predict the nonlinear motion of a floating body.

A simple configuration to study this probiem is the motion of a vertical wavemaker in a tank of
finite depth H, a problem already studied analytically, numericaily and experimentally by Lin, 1984 (see
references herein contained), and which is now becoming a standard for two-dimensional numerical wave
tanks. After a general discussion of the problem, we will consider the impulsive wavemaker problem and
study the difficulties associated with it. '

-

The Wavemaker Problem

We consider a semi-infinite tank of depth H, with a vertical wavemaker at its end. The
wavemaker is moving with a velocity scale U and a frequency scale w. An asymptotic study of the
significant degeneracies of the Free Surface Boundary Condition (FSBC) in the vicinity of the waterline
has been performed, leading to the results shown below, valid when the depth of the tank is sufficiently
large (i.e. larger than the length scale indicated).

ACCELERATION OF DOMINANT TERMS LENGTH SCALE

THE WAVEMAKER IN THE FSBC

U/ g << 1 linear and gravity g/ w?

U/ g = O(1) all g/wforU/w
Un/g » 1 all except gravity U/ w

These results let' expect that the linearization of the free surface boundary condition in the
vicinity of the wavemaker is legitimate if - and only if - Us/g is (much) smaller than 1. They seem to be

well supported by analytical, numerical and experimental observations.

1 But still within the framework of potential flow theory. Real fluid effects will not be considered here.
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A mathematical study of impulsive flows - i.e. of flows for which the acceleration of the
wavemaker is much greater than the acceleration of gravity - appears necessary. It should however be
noticed that these problems, even at first order, are expected to be fully nonlinear and transient. They
are therefore unlikely to be solved analytically, even in an asymptotic sense. A further simplification is
needed, and will be sought using self-similarity. This implies that the fully impulsive problem will be
considered (where the acceleration of the wavemaker is a Dirac delta function). The validity of such an
idealization will be discussed later.

The tmpulsive Wavemaker Problem

We now assume that the wavemaker is fixed for * < 0 2 and moving at constant velocity U for
* > 0, For a depth much greater than the displacement of the wavemaker, the length scale in the vicinity
of the wavemaker is expected Lo be Uwx. We therefore expect a self-similar solution to exist, as for the
impact at constant velocity of a wedge on an initially flat free surface. However, self-similarity is only
possible here in an inner domain and an outer solution taking into account the bottom boundary condition
has first to be found 3,
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The Quter Problem
We define § = H/ D, where H is the depth of the tank and D scales the horizontal displacement of

the wavemaker. The actual dispiacement of the wavemaker is eUt*, where ¢ = +1 if the wavemaker is
pushed and € = -1 if the wavemaker is pulled. Taking H as length scale, U as velocity scale and D/ U as time
scale, the non—dimensional equations for: the full nonlinear problem (including gravity) are readily written
using a Lagrangian specification. The unknowns are the non-dimensional displacements (X,Y) of a particle
originally located at (a,b). The outer solution is found in the limit where § —» 4.1t is identical to the
solution derived by Lin (1984) and has the classical logarithmic singularity near the origin where (i =-1):

2 i is the dimensional time, ¢ is the non—-dimensional time, Ut*/D.

3 The inner domain is defined in the vicinity of the waterline, i.e. in the vicinity of (a,b) = (0,0). The outer
domain is defined on a length scale H.

4 Gravity can be neglected at the leading order in the outer domain provided that gH/ U2 << 82,
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X-iY « £ ¢ 2 i log(® [atib]) as |a+ib|—0 .
§ = 4

The classical linearized solution for small time appears therefore here as an outer solution demanding to
be matched to an inner solution defined in the vicinity of the waterline.

The Inner Problem
Since a significant degeneracy is expected in a domain of length scale D near the origin, and since
we are looking for a self-similar solution, we define inner variables by :

- fa - & - = 8

a=—;:- , h=T ) X=T , Y:t— - E;—Iog(—-—-),
where the last term on the RHS corresponds to the logarithmic singularity of the outer solution® This
physically defines the image of the inner domain as a domain of length scale Utx, in contact with the
wavemaker and located at a height € Ut log(H/ Ut*) above the initial water level (see figure).

The equations resulting from this change of variable and the matching condition are easily
obtained at the leading order S, They correspond to the equations for the water entry problem in
Lagrangian coordinates {(Johnstone & Mackie, 1973), except for :

® the wavemaker boundary condition,

X=¢;

® the Free Surface Boundary Condition,
.2 2 -

- - 2 - 2 -
a Xu(xa+1)+a YaYa-enYa=0;

® the behavior at infinity,

- - 2 - - .
X-iYo e loga+ib) as atib—soe.
n

Using asymptotic expansions and self-similarity, it has therefore been possible to reduce the
equations governing the evolution of the flow in the vicinity of the waterline to a steady problem in an
appropriate coordinate system. Note in particular that the behavior at infinity and the wavemaker
boundary condition are consistent. -

Unlike the water entry problem, self-similarity does not imply the conservation of the arc length
along the free surface - see the FSBC. In fact, it seems that the term related to the vertical acceleration
of the inner domain imposed by the outer solution (the last term of the LHS of the FSBC) has a major

importance. This can be further analyzed by considering the linearized inner problem.

The Linearized Inner Problem

Assuming that the gradients of the displacements are much smaller than 1, the inner problem can
readily be soived by use of the Fourier transform. This yields :

o0

X=¢-1 IA(«).xp(aE):in(a;)du , with @A) - 2 erx=0 (®>0) ,
LIS L 1

X and Y being harmonic and satisfying the Cauchy conditions. Solutions of the last equations are given in
terms of Bessel functions (Jy and Y{) for € = -1 and modified Bessel functions (11 and K{) for ¢ = +1.

S Gravity can be neglected at the leading order in the inner domain provided that gH/ U2 << §.
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Matching in the Fourier domain yields a unique solution in each case. If this method leads to a satisfactory
solution when the wavemaker is pulled, a major difficulty arises when the wavemaker is pushed. In this
case, the solution in the Fourier domain increases exponentially at infinity and an inverse Fourier
transform cannot therefore be performed. This lets expect (at least) a strong singularity at the origin in
the physical domain and has still to be explained. It might be due to the linearization of the inner probiem,
but the possibility of an ill-posed self-similar problem cannot be excluded, as this is discussed in appendix
for a simple example.

Conclusion .

As for the water entry probiem, self-similarity does provide a powerful tool to deal with
nonlinear impulsive problems. For the impulsive wavemaker, self-similarity is however only possible in
an inner domain and matching with an appropriate outer solution taking into account the bottom boundary
condition is required. )

The procedure used is consistent and seems to yield a uniformly valid solution when the
wavemaker is impulsively pulled. However, no regular solution has been found when the wavemaker is
pushed. A possible reason for this dif“ﬂculty is that the impulsive wavemaker problem might be ill-posed,
i.e. that the full transient nonlinear problem (possibly without gravity) might have to be solved because,
even when the acceleration of the wavemaker approaches a Dirac delta function, it cannot be reduced
usipg self-similarity. This possibility is considered in appendix analyzing a simple example.

Appendix_: An_Impulsive Problem without Reqular Solution

We consider a nonlinear single degree of freedom system excited by a delta Dirac function :

Y = —E{tH(t)} with Ht)=0 for t<0 , Ht)=1 for t20 .
&

Ytl

The question arises to know whether or not this problem is weli-posed. We therefore consider a series of
functions t‘Y such that

fy(t)--)tH(t) as y-0 , -
i.e. we formulate the transient problem and we let the rise time go to zero. If we choose for fy :

4
f )=0 for 1<0 , f (¢)=—-‘—— for 0<st<y, f (t):t--s-y for y<t ,
Y 1 4y Y 4

a solution of the transient problem appears to be :

Y(t)=\/zz+ /11-1/:,-,«.
Y Y 2

Surprisingly enough, as y — 0, Yy has no finite limit. The solution is a function of the transient

phase and is singular when the duration of the transient phase goes to zero. A similar phenomenon might
occur for the "impulsively” pushed wavemaker.
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