161

Causality and the Radiation Condition
by
John V. Wehausen
Department of Naval Architecture and Offshore Engineering
University of California, Berkeley

We wish to consider here one aspect of the motion of a body floating
in a heavy fluid. The motions will be assumed to be small enough so
that the equations may be linearized. In order to describe the motion of
both body and fluid, we shall adopt a right-handed coordinate system
with Oz directed against gravity, Ox to the right, and Oy into the
paper. The plane Oxy lies in the undisturbed free surface. The small
excursions that the body makes about its fixed equilibrium position will
be denoted by o, ', , Where o, o, ocyrepresent translational
displacements and ey, o, oy angular ones. The dynamical constants of
the body will be denoted by m g Where my;=ms»=msz=m, the mass of

the body, and
m/x, :/)O/fZJ/x, - X/'Xk/ av, /;/(’ =4,5, 6,

where pis the density distribution of the body, < = XXy and the
integral is taken over the body. All other m j¢ are zero. Inthe
equations to be given below ¢, are the hydrostatic coefficients, v &

are the added masses as defined by Cummins(1962) (i.e., the added
masses at infinite frequency), and £ ;.(¢)is a weighting function defined

in terms of the velocity potential for the fluid motion. Its definition as
well as those of x,,and ¢, may be found in Wehausen(1971 or 1967).

An important property of £ j¢ is that it is zero for ¢<0. Let X ,(t) be

the force (/=/,2,3) or moment (/=4,5,6) to which the body is
subjected. X ,(t) may be a result of oncoming waves, of wind, or, for

example, of some exterior forcing mechanism. We suppose it to be
absolutely integrable. Then the linearized equations of motion for the
body are as follows (see Wehausen, loc. cit.):

(mp * ptig) () + Cpocy *.{: Lit-2) ocy(T) dz = X (L),

The equations are a natural candidate for a Fourier (or Laplace)
transform. We shall use the Fourier transform:

xplt) = [2Rl0) e go.
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After taking the Fourier transform of the equations of motion, we find
the following:

/_0'2//77/"(/ *ﬂ/,(/(o;)/ + C/x/ - /O’/'{/K,(O')/ or(vk(o’) = /{/v/(a’)’
where
Hi(0) = jp() #1077 24(0) = 7L jl7) 9% gz

It follows from this that y,.(-0) = y 4 (0)and A ;1 (-0) = A ;,(T).
We introduce the following notation:

Mig = =04 * fjgl * Cip o Nyp = Ay, Spp = M = iNjg .

The transformed equation then reads:

and its solution is evidently

~
SR

12 ¢ / =7/ Ik A"'(, ,

where 7= 87, i e. f /k =8 . It now follows easily from the

s pd o~
above and from known propertles of Ly that Sp(-0) = 5(0), 54

= 5',;(, and similarly for f/‘,(" . Because of this property of f/k we find

7-/'(,([) = (2”)—./.[::’ ?;K'(Oj e‘/‘O'tda.
:(er)-,/ow/?;k(aj e/'dl + f;k(a‘/ e-/'dt/ do ,

i.e. T,(t) is real
Having found &’,{d) above, we may now calculate ocy(?):
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o /(1) -“_w"’&" Aa) e’ ot 4o :';4"’ flx..,k"’(, e/t do
(2n) I Py €71 [[ZX(2) OF gr] 0o
=(210) " 1[Rar Sz) [V a0 Tylo) e™/0(t2)
(2] TN (T jpt-1)
=(27) [T (eI y(t-2) e

The preceding development is well known and has been reviewed in
order to display the last formula for a'-/("'t_/, for this formula seems to

indicate that «, at time ¢ depends upon the value of the exciting force
Xy at all future as well as all past times unless we can show that
Tj(t) = 0 forall £<0. 1t is this problem that we wish to address and
to which we now turn.

First we shall show that the desired property of 7 /¢ 1S equivalent
to a certain property of f/k . The reasoning is well known and can be

found in books on control theory (e. g., Solodovnikov, 1960, pp.24-28).
Consider the transform

Tiul0) = (27)~ 12T plt) 9 at .

Although heretofore we have thought of ¢ as being real, we shall now
take it to be complex. 7,(0) is then defined in the whole o-plane.

Let us write o =,ae"9 = p(cos @ + /sing) . Consider now

J Plc) e =
/ ?;x//‘?é’/e) o /RECOSE FLSING £s/6 49

where the path of integration is either along the semicircle C,: p = /7,
0<@<m, or the semicircle C_: p = £, Zm>6>m. These paths are now

completed by paths along the real axis from -# to #. Evidently, as
A0 the integral along C, converges to zero if £<0 and that along C_

converges to zero if £>0. It then follows that for (<0

Tdt) = lim g %ﬁf,-,/a) e /9lgo + {f,-,((a)e'/ﬂ o]
- +
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If f,x, is analytic in the upper half-plane, then r,-,(/z/ = 0for (<0.
The converse of this is also true, i.e. if 7,.(¢) =0 for ¢<0, then
7 () is analytic in the upper half-plane.

Our problem has now been transformed to that of showing that f/,(

is analytic in the upper half-plane. Since 7 = 5-7, we shall search for
an equivalent property of 5. Let # ;¢ De the cofactor of the element

~

5//(. Then it is known that
Tig = Pk//det 5.

As we shall see, 5 and hence Py are analytic in the upper half-plane.

Thus what remains to be shown is that det 5 has no zeros in the upper
half-plane. How do we know that 5 is analytic in the upper half-plane?
From the earlier formula defining #,, and A, it follows that

-~

Sig = ‘O‘Z_éml /k(U E'/O‘tdl P Cip O"O/ﬂ?,'k * ﬂ,x/"”,)/.

It has already been mentioned that £ ;.(¢) = & for ¢<0, so that its

transform is analytic in the upper half-plane. Since the other terms in
the equation above are obviously analytic, 5~/X" is also.

We turn now to det 5. The matrix § = # - /¥ is symmetric but is
not hermitian, so that no easy conclusion can be drawn from the fact of
symmetry alone. However, the matrix

S5 =11 - NI+ IN) = 192 NE o+ TTIN - MY

/s hermitian, and we shall be able to exploit this fact.

Associated with any hermitian matrix A4, =4, /,k=7,-n,
is a so-called hermitian form

Q= XA
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where repeated indices are to be summed from /7 to »n. It Is easy to
show that T = @, so that ¢ isreal. Within this class of forms one

distinguishes positive (negative) definite and non-negative (non-positive)
definite forms. A non-negative definite form is one such that @20 for
- any choice of X, '--,X,; a positive definite form is one such that @>¢@

for any choice of x,, -+~ x, except x,=x,=--=x,=0. Analogously for the

terms in parentheses. A classic theorem about hermitian forms states
that such a form is positive definite if and only if all the determinants
formed with the first minors along the main diagonal are positive, 1. e.,

At .«4,0
Ayp Age Az, Aa

A//)a p[]’ SR . . >0
Azy Azz Any T Amn

It then follows that &// main-diagonal minors are positive. There is an
analogous theorem for negative definite forms and a somewhat more
complicated one for non-negative and non-positive definite forms.
However, the only part of these theorems that we shall need is the
statement that det 4 >0 if @ is positive definite.

Consider now the special hermitian form

Q= X1 ~INj J jy #IN )% = SV/ "—'/‘,,v‘,
= x,-(/‘//-/- "W/'j)"—’;’mk/ ”Vk/)
= v,{ﬂ// —/'/V-/Jxk(/‘/k. /- - iV /-)
= Z/ | X/{”// Nif

Evidently @ is a sum of squares and hence @ 2 7. But @ can =0 for a
particular 6-tuple x;, x», ---, X5 if and only if

x Mpj~iNpg) =0, j=1, =6
If one now multiplies by x“/ and sums, one finds

x,{ﬂ,'/ N X =0 o x,/‘f,'/»x"} =7 x,N,/F/.
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Since both /7;; and ;; are real, the forms Xlj Xy and s N, X are

also real. But then both must be zero for this particular 6-tuple. This,
however, is not possible for X/V/'/z’?/' unless all x,=0, for this form is

known to be positive-definite, a consequence of the radiation condition
[see, e.qg., Wehausen, 1971, p.245, eq. 26]. Hence the form ¢ must be
positive-definite and consequently the determinant

‘et 520 or det S =o

‘~’»e

det 55 = det

Retracing our steps, we see that if the radiation condition is
satisfied then 7¢¢/) = @for ¢ <0 and hence that the future does not
determine the present, at least for linearized water-wave theory.

One may note that it is not necessary for /7;, to be positive-
definite or even non-negative definite. It is known that /7. is positive
definite, that ¢, is non-negative definite, and that ;. is neither.

However, none of this information is relevant. It is the radiation
condition, i. e. the condition that energy is carried away from an
oscillating body, that allows us to prove that 7(¢) = 0 for (<0.

This topic is discussed in an earlier paper (Wehausen, 1971), but the
treatment there is inadequate and incomplete and hardly does more than
pose the problem.
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Discussion

Could you explain why the original weighting function Lis =0
for t < 0?7 I would have thought that implies causallty

I think that the answer is "no". Li; =0 for t < 0 is a
consequence of the formulation of an initial-value problem
and the definition of L1 in terms of the time-dependent
velocity potential. %t) = 0 for t < 0 is a consequence of
the radiation condltlon However, one must admit that the
whole problem arises as a consequence of taking the Fourier
transform of the original problem and then the inverse
transform. Perhaps there is something artificial here.

There are cases when Nj; = 0 at certain frequencies, for
example for axisymmetric bodies in heave which are bulbous
below the surface. Does this affect the causality proof? Is
it possible to show Lj ij = 0 for t < 07

Since these frequencies are isolated, I would conjecture
that they play no role in the behavior of the function

T = = f T 0) e Tux

The most common method of treating transient problems is by
Laplace transforms (or one-sided Fourier transforms). Thus
if we assume that the potential ¢(x yv,z,t) is bounded for
all x, y, z and t, it will then follow that the transform
é(ac,y,-z w) = f¢(x,y,zt)ew+o{fls an analytic function of

in the upper’half plane Im w> 0, and that @ is bounded for
fixed w when 2%+ y?2+Z2%—p» 00 - It can be shown that po>;
satisfies the equations for periodic oscillations of
frequency wr (see e.g. J. Fluid Mech. 19, 1964, p. 309) and
because of our boundedness assumption it can also be shown
that @& satisfies the usual radiation condition. My
difficulty is this: How do we show that @ (x,y,z,t) is
bounded? This difficulty occurs very often when we seek to
apply Laplace transforms but has never (I believe) been
resolved. 1Is this the same difficulty discussed in the
present work, or is it quite separate?

It may very well be the same problem, or perhaps a small

aspect of it. Essentially, all that I am proving is that if
the radiation condition is satisfied then T;;(t) =

would be surprised if it entailed the boundedness of q&(%)g%{f>

Embedded in the proof 1s essentially the absence of poles of
the transfer function TQ:) in the upper half plane. If the
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domain is a closed one, it would seem the positive
definitness of A j; cannot be assured. Hence a possible
corollary of the proof may be that T(t) will depend on the
future. This however does not seem so physically plausible,
does it?

Wehausen: I have not considered the closed-domain problem.
However, x;A;iX; > 0 is a consequence of fz (’¢t ¢» dS >0
for the unbounded fluid. For a fluid contZined in a closed
basin, this integral evidently vanishes on the basin wall
and no energy is being lost. I will look at the question

later.

Kleinman: Is there an implicit assumption that L are smooth functions
of time?

Wehausen: I have not considered such questions, but I would conjecture

that smoothness is a consequence of the definition of Lik-

Van Hooff: This discussion reminds me of Routh-Hurwitz stability
criterion for 0.D.E.'s. In that case, stability is directly
associated to causality.

Wehausen: I do not see the connection, but one may exist.

Newman: Implicitly, the proof assumes the forward speed
U = 0. For U > 0, various exceptions may arise including
negative damping, yet we believe that causality still
applies. Have you considered this?

Wehausen: When U # 0, it is known that Mij # Mji and 111 *Aji
in general. The proof in the paper seemed to rely upon
symmetry of the matrix S;;. However, this is not necessary.

The product S§' is Hermitian. The condition -fz BB AS >0
leads to the positive-definiteness of the quadratic form

x; E"().;d- "')‘Jf) + A'U'ZC/W;J "MJ.’)J x; > 0

A development similar to that in the paper leads to the
positive definitiveness of the Hermitian form XisiijE§3
and thence back to the conclusion T(t) = 0 for t < 0,

T. Wu: Professor Wehausen, with this contribution of yours, it seems
possible to establish a general rule for imposing the
physically appropriate radiation condition. If established,
it should be a very valuable achievement because such a
condition for the most general case can be difficult, even
for the case of conventional formulation, leaving alone
further variations and nonlinear theory. (For example,
consider the case of an obstacle, moving forward while
oscillating in some modes in a free stream that is sheared.
Would a valid radiation condition be readily available, under
both gravity and capillary effects?)
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In regard to Professor Ursell's comments, I fully agree that
in considering the initial-value problem (using the Laplace
transform on linear theory, for instance, or using the
time-domain approach for nonlinear problems of free-surface
waves) it is always possible to curtail the radiation
condition and one can always go directly to the large time
asymptotic result (based on linear theory) provided the
initial data is sufficiently limited in spatial distribution
so that the necessary and sufficient conditions are satisfied
in applying the Tauberian theorem.

N;j; may be negative without forward motion in certain cases.
Does your proof breakdown at these frequencies?

Individual Nj;'s may be negative, but the quadratic form
Xi Nij §j mus% be positive, and this is all that is required.

Wehausen has opened up an area which we have glossed over for
some time. I hope this will inspire much discussion.




