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ABSTRACT

First and second order transient diffraction velocity potentials
for a vertical cylinder are obtained by using the Weber transform.

Diffraction theories for a vertical cylinder have been the subject
of research for nearly three decades. MacCamy and Fuchs (1954) solved
explicitly for the linear diffraction velocity potential for a vertical
cylinder in the frequency domain. Chakrabarti (1972) examined the
nonlinear diffraction effect by using Stoke's fifth order wave and
obtained an approximate expression for the wave forces. In his theory,
the fifth order wave is treated as the sum of five linear independent
waves. The diffraction potentials are obtained by satisfying the body
boundary condition, but the nonlinear free surface condition is not
satisfied exactly. Chen & Hudspeth (1982) used the eigen-function
expansion method to obtain second order diffraction potentials for a
single—frequency incident wave. All existing second-order diffraction
theories possess three common properites : (i) apply in the frequency
domain. (ii) employ an incident wave at a single frequency. (iii) a
condition of outgoing waves at infinity is assumed without proof.

The present theory treats the first and second order diffraction
potentials as initial boundary-value problem and solves them in the

time domain aiming to avoid the three restrictions mentioned above. The
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steady state frequency domain solution can be obtained by formally
letting t approach infinity.

In the initial boundary-value problems for the first order (wél)(g,t))
and second order diffraction potential (wéﬁ)(?,t)),bOth Wél)(?,t) and ¢éz)(?,t)
satisfy the (i) Laplace equation (ii) bottom boundary condition (iii) |
inhomogeneous body boundary condition (iv) homogeneous free surface

(2)

condition for wél)(?,t) and inhomogeneous free surface condition for wD (?,t),
with the inhomogeneous terms being quadratic products of the linear
solution. The initial conditions are assumed to be : wéi)(z=0,t=0) =

(i)(z=0,t=0)=0, i=1,2. In the above formulations the only difference

th
between wél)(?,t) and wéz)(?,t) is that wél)(?,t) satisfies a
1 .
homogeneous and wé )(?,t) an dinhomogeneous free surface condition.
(2)

wD (;,t) can be linearly decomposed into two separate problems, each
having only one inhomogeneous boundary condition.

The incident wave is decdmposed into a series of cosmd or sinmd
modes in the 6-direction , so are the diffraction potentials. For each
mode n, the 3-D Laplace equation can then be reduced to a 2-D equation
in the variables r and z, and mode number n as a constant parameter.
The Green function for this equation and free surface condition are
generated by using the Weber transform in the r-direction.

Weber Transform :

Zn(Kr) = Jn(Kr)Y;(Ka) - Yn(Kr)J;(Ka)
¢(k) = [ r-z (Rr)G(r)dr
[0 ]
- ® K*G(K)*Z_(Kr)
G(r) = n dK

3 3
0 Jn (Xa)+ Yn (Ka)




where a is the radius of the cylinder.

first kind]

J
("n) ; 4 [
v is Bessel funation of second kind

n
We take inverse Weber transform to obtain G(r,z,t). The mode

number n appears as the order of Bessel functions. Both in the

1

formulations forwD

(¥,t) and wéz)(?,t)there is no need to specify
a radition condition as is the case in the steady state frequency
domain problem. In the limit of t-w~, proper radiation condition for
the second order problem is also studied.

Following the construction of the relevant Green function for the
first and second-order problems, their solutions are written down as
explicit integrals of them since both Green functions satisfy
homogeneous boundary conditions on the body boundary and free surface.

A method is developed for first order and second order transient
diffraction velocity potentials for a vertical cylinder. No radiation

conditions are assumed. The first order and second order incident waves

can be of arbitrary forms,
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Discussion

What is the meaning of the time-domain solution of the
diffraction problem? You assume that there is no motion when
t < 0 and also that there is a regular incident wave train.
Are these not contradictory?

We are not interested in what happens for t < 0. For the
diffraction problem, it is the two initial values at the free
surface that affect the solution for t > 0.

In effect, you exchange the radiation condition in the time
haromonic case for an assumption of limiting amplitude in the
time dependent case. For the circular cylinder you can
construct the time dependent solution and demonstrate
explicitly that the steady state time harmonic solution (which
satisfies the radiation condition) is approached for large
time. For arbitrary bodies the limiting amplitude principle
(approach to steady state) must be proven (which is difficult)
or assumed which I think is equivalent to assuming a radiation
condition.

The body shape does not matter. The behavior at infinity is
the same.

You still need to make some assumptions about the steady-state
limit in the time-dependent problem. Show that transient is
decaying, etc.

For the general problem, we need to discretize the free
surface up to a large but finite radius and assume that the
disturbance vanishes at larger distances. No radiation
condition is necessary since at all finite times the transient
disturbance vanishes as the radius tends to infinity more
rapidly than in the steady-state case.

For an arbitrary body, you cannot avoid the necessity of
deriving a suitable Green function, but there is no direct
need to specify a radiation condition. In fact, using the
Weber transform of Bessel functions actually implies a
radiation condition.

We cannot reach the steady state numerically.

Does your transform satisfy a radiation condition in the
steady-state limit?

We do not know what the radiation condition should be for the
steady-state case. That is why we start out with the
transient problem.




