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If air is caused to move in a non-uniform manner above a water surface, that surface
will deform under the action of the non-uniform aerodynamic pressure, whether or not the
water moves. This talk concerns only those cases where the water remains at rest, or in
which its motion can be neglected relative to that of the air. In such cases, the equilib-
rium free-surface configuration represents a balance between aerodynamic and hydrostatic
pressures.

The boundary condition on the interface between air and water can be shown (Tuck,
1975) to be equivalent to that for moving water with a constant-pressure free surface.
Some well known water-wave solutions (e.g. deep-water Stokes waves, as computed by
Schwartz, 1974) can simply be turned upside down and re-interpreted as relevant to the
present context. However, an interesting class of problems that does not have a direct
water-wave analogue is that in which the air layer is of finite thickness, its upper boundary
being a constant-speed free streamline.

An example of such a flow is a vertically downward jet of air impinging upon the water
surface, where it splits symmetrically and then spreads out over the surface, generating
waves in the process. This problem was studied first by Olmstead and Raynor (1964), and
more recently by Vanden Broeck (1981). It is the purpose of the present paper to study
another (unsymmetric) example of a generating mechanism, as well as to investigate in
their own right the non-linear waves that are generated.

As an idealised model of the edge-seal zone of a hovercraft (see e.g. Trillo 1971), or the
trailing edge of an airfoil flying close above water (Tuck 1985, Grundy 1986), consider the
steady flow sketched in Figure 1. Air (assumed incompressible) is caused to flow inward
from infinity on the left, in a sink-like manner, in a sector region bounded by a plane wall
and a static water surface. The air then passes through a gap beneath the lower edge of
the wall and the water, and emerges on the right as a jet, that flows to infinity in a layer
above the water surface. At a great distance to the right, there appears an asymptotically-
periodic wave, and one of our tasks is to compute the amplitude of the wave generated, as
a function of forcing parameters such as the net volume flux of air and the gap width.

The wave is small only when the air flux is small, or, more precisely, when a suitable
Froude number based on this flux is small. In the limit when this Froude number tends
to zero, the water surface appears as a rigid wall, and the air jet flows over that wall in
a non-wave-like manner. This is a standard free-streamline problem, and the solution can
be obtained easily in closed form by hodograph methods.

A generalisation to finite Froude number allows the water surface to deform, and this
problem can be converted to a non-linear integral equation for the hodograph variables (ve-
locity magnitude and direction) along the air-water free boundary. This integral equation
is then solved numerically for various values of the Froude number and wall angle.

As the Froude number increases from zero (in effect, as we blow harder relative to
the available gap), the violence of the disturbance to the water surface increases, and
the amplitude of the far-field waves increases. However, at least in theory, extremely
steep waves can be generated, with amplitudes many times the gap width or the air-layer

thickness. In practice, such large free-surface deformations would suggest a break up in
the form of spray.

In order to throw more light on these large-amplitude waves, an independent study is
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provided of the far-field limit, i.e. of purely periodic plane waves on an interface between
dynamic air and static water. For this purpose, a simple Fourier series representation of
the solution is truncated to a finite number of terms, the coefficients of which are then
found by collocation of the boundary condition. '

In the limit where the air layer’s thickness is far in excess of the wavelength, these
waves are exactly the same as deep-water plane progressive (Stokes) waves, turned up-
side down. Such a “deep-layer” wave has the usual maximum steepness (trough-to-crest
height /wavelength) of about 0.141, and is limited by development of a stagnation point in
a 120° angle, but at the trough rather than the crest. However, finite air-layer thickness
has the opposite effect to that of finite water depth on Stokes waves, in that it allows
the steepness to increase above 0.141. For large-to-moderate layer thicknesses, the limit-
ing wave of maximum steepness still has a stagnation point at the trough. However, for
moderate-to-small layer thicknesses, the waves become so steep (amplitudes comparable
to wavelength) that they are no longer so limited, but continue to steepen until the upper
air surface self-intersects.
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Discussion

Can you relate this problem to the conventional Stokes wave
problem? For Stokes waves, one can obtain a power series
relating the phase speed to the wave amplitude.

This problem is conjugate to the Stokes wave problem in water
of finite depth.

You have a momentum source, so the relationship mentioned by
Schwartz probably does not exist,

Can you do experiments with some liquid other than air which
has a different density from water?

I agree that it is easier to do the problem especially if the
density ratio is close to unity.

For the present case with an air-water interface the air will
blow off in reality. Solutions are computed that possibly
could exist, but for high speeds they are probably unstable.

The most noticeable feature of a hovercraft is the great
volume of spray they generate, which leads me to wonder about
the stability of the free surface. Could you draw a plot of
the pressure distribution above the free surface, and on the
same absissa the free surface shape? This would indicate
whether the flow is unstable.

The wave will become unstable when its amplitude gets large.
One could study at what steepness this will occur.

Have you considered incident waves and a hovercraft's motions
in this study? There is a longitudinal variation in the
pressure distribution under the skirts of a hovercraft which
should be considered. And the heave motion of the hovercraft
also induces further fluctuation of the air pressure.

I did not study the hovercraft problem in waves.

You are neglecting the flow of water below the free-surface
and the flow of air above it. 1In the zero Froude number case
the flow resembles one half of a jet, so would it not entrain
air from above the "separating" streamline?

I agree that entrainment will occur. The problem is subjected
to all the difficulties you mentioned even at zero Froude
number, also to the problem of spray formation at finite
Froude number.
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I am thinking again of:

(1) the relationship to Stokes waves. For gravity waves we
need to consider the singularity in order to determine the
limiting form. For pure capillary waves on the other hand
there is a closed-form solution with no singularity. 1Is it
possible to relate your limiting form to the capillary-wave
solution?

(ii) Can you pose the problem without gravity?

(1) I do not know the answer to that. For large Froude
numbers the limitation is similar to that for capillary waves.
The waves are only limited by topology. The solution moves
smoothly from this limiting case to the more usual Stokes-wave
type limitation with a 120 degree stagnation point on the free
surface as the Froude number tends to zero.

(ii) It is not possible to do the problem without gravity.

I worked on air-cushion vehicle hydrodynamics at the beginning
of my career. As a function of Froude number, the
wave-resistance coefficient of a two-dimensional constant
pressure patch is highly oscillatory with non-decreasing
amplitude in the low Froude-number limit. It is not really
infinite as you stated. The effect of tapering the edges of
the pressure band is to decrease the amplitude of oscillation
at low Froude numbers. Perhaps your present model will
provide some guidance on the magnitude of the taper.
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