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ENERGY CALCULATIONS BASED ON THE MODIFIED ZAKHAROV EQUATION

by Michael Stiassnie, Department of Civil Engineering, Technion, Haifa, 32000 Israel
and lev Shemer, Faculty of Engineering, Tel-Aviv University, Tel Aviv 69778, Israel

1. INTRODUCTION

The equations governing the irrotational flow of an incompressible 1nviscﬁd fluid
with a free surface and infinitely deep bottom can be transformed into an evolution
equation in the Fourier-plane:

138 = I3B,k,0) + L(Bk,t) + ... 1)

The dependent variable B(E,t) represents the free~components of the wave-field.
13, I&"' » are integral operators representing quartet, quintet, ..., nonlinear
interactions, respectively,

The leading term on the r.h.s, of (1) was first derived by Zakharov in 1968 and the
higher-order term 14 was obtained in Stiassnie & Shemer (1984).

B(k t) is related to the Fouriler-transform (denoted by a hat) of the free surface
elevation n(x,t) and of ds(x t) = 4(x,n(x,t),t) - the velocity potential at the free
surface, through b(k,t) - which 1s a kind of generalized 'amplitude' spectrum,

At = GRIB, O+ (K, )], wk) = (g1kD?, (2a)
150,0) = ~1(E) bk, ) - br(k,0)], (2b)
and b(k,t) = [B + B'+B"+B"'+,,.] e~lo()t (3)

The quantities B', B",... represent second order, third order,... locked-components
of the wave field, all known functions of B, k, and t.

In the present study we use a discretized version of (1) and a Runge-Kutta method to
calculate the evolution of wave fields which consist of at most five free
components: '

t
n =nilan cos(Enoz_- £ R, dt+en) + higher order locked components 4)

The wave (1) is the leading component of a Stokes wave - sometimes called 'the
carrier'. The two couples, (2,3) and (4,5) were chosen to be the most unstable
disturbances of class I and class II instabilities respectively. These disturbances
were given an initial amplitude equal to 107 of the carrier-amplitude.

As in Shemer & Stiassnie (1985) we look again at two simpler cases: The first deals
with class I instabilities only (BASBSEO), and the second is restricted to class 11
instabilities (32233-0)

2. ENERGY CALCULATIONS
The exact equations of motion for water-waves are known to form a Hamiltonian

system, and the total energy of the entire wave-field is conserved. The average
energy density, taken over the (xl,xz) plane 1s given by:
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Any exact solution should give h = constant, for all t. When a truncated version of
(1) is used, one can expect (5) to yield h(t) which is only approximately constant.

The accuracy of the calculated h is related to the accuracy of the 'amplitudes' b,
To obtain h accurate to order (alkl) , b should be accurate to order (alkl) thus
only the free waves are required.

A more detailed investigation shogs that the result obtained by usipg only the free-
waves is accurate to order (klal) and has an error of order (klal) . We denote
this result by h3.
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h3 = z3= nil“n'Bn' =5 nLI 4n (6)

For higher order corrections one has to include the locked waves. To obtain h, (h
accurate to order (a;k )4) 580 wave components are required; these include B, B', B"
and yield products o% with B”, and B' with B', h: is obtained when all the 3705
wave components (5 free and 3700 tuged) are included; thus adding products of B with
B'" and B' with B", Note that in order to obtain an accuracy higher than h5 one has
to add higher order terms on the r.h.s. of (1).

3. RESULTS

In Fig. 1 we show the variation with time of the amplitudes of the free waves for
class I instability (in the upper row), class II instability (in the middle row) and
for the coupled instability (in the lower row). The results are for three different
Stokes waves having initial steepness: ¢ = 0.130 (in the left column), ¢ = 0.227
(middle column), and ¢ = 0.336 (right column), The curve (1) is for the carrier
amplitude, the curves (2), (3) are those for the amplitudes of the most unstable
class I disturbances and the curves (4), (5) which coalesce for the present problem,
are for the most unstable class II disturbances. All nine figures have a duration of
about 400 carrier periods. )

The uppermost curves in Fig. 1 represent three approximations of the average energy
density, i.e. h3, h4 and hS‘

Class I interaction: one can see that contribution of the energy terms of the order
(kial)4 leads to a considerable improvement in the conservation of the calculated
energy in the evolution process, and h, does not deviate practically from a
horizontal curve, with the exception o% the highest amplitude considered. The higher
order, h5, curve does not differ from h4.

Class II interaction: The middle row of Fig. 1 shows that the addition of the energy
terms of the order (klal) changes only the 'mean level' of the energy density. In
order to obtain improvement in the energy conservation one has to take into account
higher order, (klal)5 terms, Note that these terms are not necessarily positive and
the h4 and h5 curves intersect,
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Coupled (Class I + Class II) interaction: For the lowest amplitude considered
(e=0.13) the curves h4 and h5 hardly differ from each other and from the horizontal
straight line, giving an improvement compared to h,. For ¢ = 0.224, h4 and hS give
considerably better results than h, , but the deviations from a horizontal line are
clearly seen., At even higher amplitude ¢ = 0.336, one sees that the present order of
approximation is not sufficient., Note that the conclusion of Yuen & Lake (1982) p.
196 that the Zakharov approximation does not conserve energy stems from the fact
that they refered to h3, and did not take 1nto account the higher order
approximation h,. We believe that the above results indicate that the modified
Zakharov 1s a consistent approximation of the water-wave problem.
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Fig. 1: Dependence of evolution process on the carrier

steepness
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Schwartz:

Stiassnie:

Discussion

Linear instability is only applicable for short times. Here
you trace the time evolution. What is the ultimate fate of
all of these instabilities?

The ultimate fate of these instabilities depends on the
initial 'noise level' or the initial disturbances. In some
cases, it leads to Fermi-Pasta-Ulam recurrence, in others to
an aperiodic (maybe chaotic) behavior. For very steep waves
the situation is even more complex due to the occurrence of
local wave-breaking.




