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APPLICATION OF THE LOCALIZED FINITE ELEMENT
METHOD TO THE 2-D NEUMANN-KELVIN
PROBLEM

J. POUSIN, M. VERRIERE, M. LENOIR
GHN/ENSTA - Chemin de la Huniére
91120 - PALAISEAU - FRANCE.

The aim of this work is to solve the 2-D nonlinear wawe resistance problem.

One possible way is to use the localized finite element method (L.F.E.M.). In
this way we can solve the nonlinear equations near the bottom irregularities and
the linearized equations elsewhere. The L.F.E.M. has been originally developped
by K.S BAI [1] for numerical solutions of the 2-D Neumann-Kelvin problem.
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We consider an incompressible perfect fluid flow irrotational at
infinity on an irregular bottom. The bottom irregularities have a compact
support. The problem can be formulated in stream function or in potential
function.
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I - THE STREAM FUNCTION FORMULATION

I.1 The linear case a result of existence and uniqueness

The free surface and bottom equations are respectively y=1 and y=f(x).
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The dimensionless equations for the perturbation of the stream function
Y and for n the perturbation of the linearized free surface are given by-
the problem (P) : Find ¢ fulfilling :

Ay = 0 in Q,
2 ¥ = F2 ¥ on Fs,
y+f = 0 on B,

Y and [Vy| are bounded and vanish at infinite upstream.
F denotes the Froude number.
Theorem 1.1

For F<1l, if f is p1ecew1se cont1nous1y differentiable, if f' > 0,
and if F-2 (1-H/h) # 1, then there exist a unique ¥ ¢ Hioc(n ) solution of

(P). This result is proved in Pousin [2]. [

Formulated in this way we cannot solve numerically this problem because
the fluid domain is unbounded. Therefore we introduce a problem posed in a
bounded domain. Let us suppose that we know wb a solution of the resticted pro-

blem (P) to 2 and vy solutions of the restricted problem (P) to Qs i=1,2.
If these functions connect each other harmonically then y = wb in Qb’ Y= w

in Q. will be a solution of (P). For this it is sufficient to impose the connec-
tion in value and in normal derivative. Now we are able to introduce the matching
operator

1/2 -1/2 1/2

Ti H (zi) + H
ui is solution of :

(Zi) which associates an us to ¢ € H (Zi) where

Aui =0 in Qi’

=2
an ui = F u1 on F Si’

u; = 0 on Bi
= ¢ on Zi,
u; and IVui[ are bounded and vanish at infinity upstream.

Looking for u. in form of a separate variables function, we have the
following result :

Proposition 1.1.

The functions depend1ng on y in the separate variables funct1on us

make up a basis of H (Z ) and Hl/ (Z ) and are orthogonal in L (2 ). Horeover
if ¢ e H (2 ) and ¢(h ) = 0, then T, ¢ can be represented as a ser1es
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Before introducing the problem posed in a bounded domain (Pb) we
need to extend the Dirichlet condition on the bottom B, by a function
g which satisfies : support of g c 2, v Q2, support of Ag < s 9 fulfils

- the free surface condition. Then we shift y and denote again by v, w-g.D

1.2 The bounded domain (Pb)

Find (y,a) ¢ Hl(Qb) x R solution of :

Ay =0 in .,
_ =2

anw =F "¢ on FSb,

anw = - Tiw on Zi i=1,2

y+f = 0 on Bb’
0 0

¥, ¥) =0, (3%, %), = a, where

. . L (51% . L*(Z2)
- _ 0 0 0
¥] = shw vy, th wy = W) F2, ¥y = sh w, (y-h), th(l-h)w2 = wg F?
Theorem 1.2

The problems (P) and (Pb) are equivalent.
Now we can consider the nonlinear problem where the fully Bernouilli

equation is locally treated. For a description of the equations and an algo-
rithm alloving to compute numerical solutions look in [3].D

II - THE POTENTIAL FUNCTION FORMULATION

II.1 The linearized equations

The dimensionless problem (Q) for ¢ the perturbation of the potential function
and for n the perturbation of the linearized free surface is :

2

. 1
Find ¢ ¢ {v ¢ H 2oc

oc (SL)} satisfaying :

), va e L
Ad = 0 in Q,
- 2 2
8n¢ = - E +3x¢ on FS,
3n¢ = -(n/x) on B,

¢ and |V$| are bounded and vanish at infinite upstream.

n is the outward normal. Then wé can deduce the free surface elevation
a posteriori by n + F? 3,9 = 0 on FS.q

As for the stream function formulation we need to introduce a problem
posed in a bounded domain. Let us consider the following operator Ti‘
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Ti : Hl/z(zi) -+ H'l/z(zi) which associates the normal derivative of u; to ¢

where u; is solution of :

Au, = 0 in Qi’

i

= . F2 2
anui F ax¢ on FSi,
)} u; = 0 on Bi’
ui = ¢ on Zi,

u, and quil are bounded and vanish at infinite upstream.

We Took for a representation of Ti in form of a series. To do this we
put u, = v(y) f(x) then we get the following result :

Proposition 2.1.

The functions v(y) make up a basis of Hl(zi). Morever for each w e Hl(zi)
we can represent it as a series :
00 00 .00 00
W(y) = Z [b (W b5 )/b (¢ /¢ )] ¢ (y) + alb’ (W ¢ )/b (¢ s 5 )] ¢ (y) ,where ¢
k=0
are the basis functions and b1 is the bilinear form defined by

. 1
b'(u,v) = [ viylu(y) - F2 u(1)v(1) h = (i-1)h,i = 1,2.
hy
The matching operator

We introduce the matching operator (Ti + B, Id), B; € R.
Lemme 2.1

If us e H (Z ) we have :
*e k K K
(T, + 8; Id)u, = 21 (1) (wy + 8,) Q5luy) o5(y) +
1=~
(i 1)a(w°° + 8;) cwo (u;) ¢3°()

where Q (u ) are the components of u; on the basis.

Remark

If By is different from 0, as b‘(¢¥, ¢f) =6 then u, cannot

be constant

kd’
‘0




Now we consider the problem posed in a bounded domain (Qb) : a 141

Find (¢,a) € { V e Hl(Qb), O,V LZ(FSb)} x R solution of :

Ap = 0 in Qb’
30 = - F2 379 on FS,
. 3,0 - B =- (T +B8) ¢oniiy,
30 =-T,¢oniy,
3.9 = - (n/X) on By, -

b(¢, ¢3°) = 0, b2(68¢,¢2°) = a, where ¢3°(y) = chudy, ¢3°(y)=chuRy-h),
00 i 0
th w; (l'hi) = F? w;
Remark

In the variational formulation if we use the bilinear form

b1(.,.) to represent the coupling terms, the pinpoint terms F* 3x¢(x,n(x))
Coming from the integration by parts on the free surface FSb disappear.D

II1 - THE NONLINEAR EQUATIONS

The equations are the Bernoulli and kinematic equations on the free surface
FSb. We use an algorithm based on a fixed point method of the geometry of Qb

and a connection with the solution of the linearized equations outside of Qb‘

For Qg, n" given we compute (¢"+1, a"+1) by

ntl

(x) A9 =0 in Q.
> o™ = - k22 ™1+ k", ") on Fs,,
an¢"+1 = - (#/X) on B,,
2 o™ - g™ = (1) + 8) " on 1
ntl _ n+l
3n¢) = - T2 ¢ on Z2

+
bt (o™,42) = 0, b2(3 6™, 43°) = o™

then we compute nn+1 by :

n+l : +
n (2) = an ¢"+1 ds + nn+1(x1), where nn 1(x;) is
FSE n {x1 ¢ &}
evaluted with the linearized model.

If Qg+1 is different from Qg Go to (%)
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Some Comments.

On the free surface we use a mixed condition of the Bernoulli and kinematic
equations because without a condition such as the linearized free surface condition
the L.F.E.M. doesnot imply a propagative solution in Q,.

As we use the real free surface at each step,even if we use b‘(.,.) to
represent the coupling terms, the pinpoint terms coming from the integration by
parts on FSb dont disappear.Morever the matching operator doesnot connect the

tangent derivative at the free surface of the inner and outer solution.

Therefore this algorithm doesnot converge in the fluvial case and converges
in the torrential case. In fact in the torrential case the tangential derivative at the
free surface is not really different from 3, which is the normal derivative on Z..
In oder to be able to obtain numerical solltions in the fluvial case we have '
to use an operator T. which associates the derivative in the direction of the
tangent at the free surface of u, and not the_normal derivative. If we do this
and if we represent the coupling 'terms with b'(.,.) the pinpoint terms will
desappear.D

(11 K.S. BAI : "4 localized finite element method for steady two dimensional
free surface flow problem”. Proceeding of the first international conference
on numerical ship hydrodynamics, Gaithersburg, Maryland 1975.

{21 J. POUSIN : "Un résultat d'existence et d'unicité pour le probléme de
Neumann~Kelvin"”. Comptes rendus d 1'Académie des Sciences, Paris, t. 301
série I n® 20 - 1985,

[3]1 J. CAHOUET, M. LENOIR : "Résolution numérique du probléme bidimensionnel
de la résistance de vagues non lindaire”. Compte Rendu & 1'Académie des
Sciences, Paris série II t. 297 - 1983.
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Discussion

What geometric restrictions were there on the bottom contour?

The restriction is that the slope is positive. For a general
bump we have to study the spectrum of the wave operator and we
have to prove that there are no eigenvalues for a Froude
number different from unity.

At various stages you cited a need for a basis, did you
formally show the existence of an orthonormal basis or did you
explicitly produce this basis?

We have shown the existence of an orthonormal basis in the
stream-function formulation. In the potential function
formulation we have shown the existence of a basis which is
not orthogonal for the usual scalar product of L2 but which is
orthogonal for the bilinear form bl,

The orthogonality is not very clear in J. Bai's paper. It is
more than just a dot product, it also has a free surface
contribution.

The basis is not orthogonal for the potential function
formulation but it does not matter if we use the bilinear form
bl in the variational formulation of the problem.

Are you aware of Forbes' work published in the Journal of
Fluid Mechanics in 19827

Yes, I am familiar with his work.

Prof. Yeung's comment reminds me of work I did with Chen
(1976, J. Num Methods of Engineering) where we have already
used that eigenfunction set.

But that was with a complex formulation.

The basis is made up of real eigenfunctions.

The point is that that was for a linear problem, right?

For the linear problem Mei and Chen (1976) showed that this
steady problem can be reduced to two equivalent diffraction
problems: a scattering problem and a fictitious radiation
problem.

I think the formulation proposed by Mei and Chen is not

convenient to treat the nonlinear problem. Therefore, we
needed to study the localized finite element method.




