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The potential of a submerged source moving with constant
horizontal velocity beneath a free surface can be expressed by several
well known integral representations. However, the numerical
evaluation of these expressions is a major obstacle to the development
of computational models for analysing ship waves and wave resistance.
The source potential, or Green function, can be expressed as the sum
of an elementary Rankine source 1/R, its image 1/R above the free
surface, and a double integral which accounts for the linearized free-
surface effects. In the double integral, which can be interpreted as
a distribution in wavenumber space, a pole is encountered at the
wavenumber of the free waves propagating in a steady state relative to
the moving disturbance. The contour of integration may be deformed in
an appropriate manner around this singularity, to proscribe waves
upstream of the disturbance. Equivalently, the double integral can be
expressed in terms of its Cauchy principal value, and augmented by a
singl; integral associated with the residue at the pole ([1], eq.
13.36):
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Here the Cartesion coordinates (x,y,z) are nondimensionalized by the
wavenumber corresponding to the forward velocity, which coincides in
direction with the x-axis. The origin 1is in the free surface and the
vertical z-axis is positive downwards.

Other equivalent expresions may be derived by contour integration
and residue calculus, with different decompositions between the doup]e
integral and residual single integral. In one of the most effective
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decompositions for numerical analysis the radiating waves are
described completely by the single integral, and the remaining double
integral represents a symmetric local disturbance:
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In this work a new computational approach is adopted to evaluate
the double integral, in the latter decomposition, based on the use of
multidimensional polynomial approximations. This technique has been
described briefly [2] in the special case y=0, where the source and
field point are in the same transverse plane. The essential step is
to regard the double integral (minus a singular component at the
origin) as a regular function of three variables which can be expanded
and approximated systematically by Chebyshev polynomials.

This approach is more common for the evaluation of transcendental
functions of a single variable, and useful analogies can be drawn, for
example, from the usual algorithms for evaluating the Bessel function
Yo. It 1is necessary first to ensure that the function to be
approximated is sufficiently regular, and for this purpose its
analytic behavior must be understood both close to the origin, when
the source and field point are coincident on the free surface, and far
away. The double integral has a weak singularity at the origin, which
must be removed systematically to ensure good convergence of the
subsequent Chebyshev expansions. On the other hand, the asymptotic
form far from the origin 1is useful computationally, and provides
guidance in choosing the appropriate form for the approximation in
that domain. The different analytic structures in these two limits
dictate separate approximations, and ultimately we find it necessary
to establish three partitions at constant values of the radius R, with
separate polynomial approximations in each of the four resulting
subdomains.

The application of the present results is extremely simple and
effective. 1In particular, the double integral can be evaluated to
five or six decimals absolute accuracy throughout the computational
domain by evaluating a polynomial with about 200 coefficients. A
smaller number of terms can be used if less accuracy is desired.




The singularity at the origin is studied by expressing the inner
member of the double integral in terms of the complex exponential
integral [2, eq. 36], and retaining only the logarithmic singularity
of that function. The resulting singular component S is then derived
by expanding the remaining exponential factor of the integrand in
powers of the three Cartesian coordinates, and integrating term-by-
term. This procedure is systematized by defining two families of
definite integrals and deriving algorithms for their recursive
evaluation. For the numerical results derived here, this process is
truncated after including powers of the spherical radius R up to
three. The resulting expression for S includes twenty terms, and
requires the recursive evaluation of 12 definite integrals.

The asymptotic expansion for large values of R is in descending
negative powers of R times functions of the two spherical angles. The
basic form of this expansion can be deduced rigorously from the above
representation involving the complex exponential integral, but the
details of this expansion are wmore easily derived from an indirect
procedure. We start with an alternative form of the Green function,
which is more directly related to (1) after accounting for the branch
cut of the exponential integral Ej along the negative real axis:
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In this form the complex exponential integral has an argument which is
bounded from below and proportional to R. Asymptotic expansion of Ej
is then justified, and the resulting approximation of the integrand
may be integrated term-by-term. This yields an asymptotic expansion
of the first integral which is regular up to the free surface, as is
the original double integral in (2). Since the second integral in is
exponentially small when 2z>0, the derived expansion of the first
integral is asymptotically equivalent to the double integral in (2)
for points up to and including the plane z=0. The final result of
this procedure is a two-parameter family of definite integrals related
to the associated Legendre functions, and thus amenable to recursive
evaluation.

The derivation of triple Chebyshev expansions in _the three
spherical coordinates is performed after establishing .radial
partitions at R=1, 4, and 10. In the first subdomain the singular
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component S is subtracted from the double integral, and the difference
is evaluated in double precision by Romberg quadratures. The discrete
orthoganality relations are then used to evaluate the coefficients of
the three-dimensional expansion, including Chebyshev polynomials up to
the order n=16. The coefficients with absolute value exceeding 1E-9
have been retained, and the subset with values greater than 1E-6
yields an effective single-precision approximation for the double
integral. A similar procedure is followed in the other subdomains,
without subtraction of S. (In the domain R)10 the radial argument of
the Chebyshev polynomials is a linear function of 1/R, suggested by
the asymptotic expansion of the double integral.) In each of the four
subdomains about 200 coefficients are retained with absolute values
greater than 1E-06.

Equivalent "economized" ordinary polynomials in powers of the
three spherical coordinates are derived from the truncated Chebyshev
expansions., The use of these polynomials permits the double integral
to be evaluated by nested multiplication, throughout the physical
domain, with about 200 floating point multiplications and the same
number of additions. (For the domain OCR{1 the singular component S
musg al;o be evaluated, but this 1is a relatively small computational
burden.

A paper describing this analysis with tables of the Chebyshev and
ordinary polynomial coefficients will be submitted for publication in
the Journal of Ship Research. This work was supported by the Office
of Naval Research and the National Science Foundation.
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Discussion

When you were working out the integrals, were you using double

integrals or were you using an efficient algorithm for the
exponential integral?

I evaluated Ej, using methods such as the continued fraction,
which T presented at the Fourth International Conference on
Numerical Ship Hydrodynamics, 1985.

Referring to the use of entirely analytical expressions for
Green's formula, I would like to state that in the
corresponding case of the 3D Green's function or pulsating
source at zero forward speed and finite water depth,
Gauss-Laguerre quadratures can be very efficient in the
region where John's formula cannot be used. In doing this, it
is assumed that the required Bessel and exponential-integral
functions are given through Chebyshev polynomial expressions.
[1] Papanikolaou, A. "On Alternative Methods for the
Evaluation of Green's Function of a Pulsating 3D Source for
Arbitrary Water Depth and Frequency of Oscillation",

Berlin TUB/ISM rep 83/17 (1983) Submitted for publication,
Journal of Eng'g Mathematics,

We have to be careful not to compare apples and oranges. You
have to be sure the computation is done to equal accuracy and
can be done over the entire domain,

We are also looking for efficient algorithms for both the
translating and the translating and pulsating source Green's
functions.

Now that the times to compute elements of the influence matrix
can be reduced to very low values, reducing the time for the
matrix inversion should be given more attention than it is
currently given.

I agree. Now we should attack the solution scheme.

I have heard some say the finite-depth problem at zero speed
can be done starting with John's formulation and letting the
depth go to infinity. However, it is never efficient to use a
general algorithm repeatedly for a special case.

I think Newman's contribution is significant. Can you also do
it for a doublet? Now that the first step toward improving
the numerical efficiency for free-surface problems has been
taken, I think we should also direct our efforts to resolve
the following outstanding problems: (1) For a given
free-surface problem, what type of singularity (source,
doublet, or combination of both ) should we use? (2) For a
given geometry, type of singularity, frequency of oscillation
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Newman:

Yue:

Newman:

and ship speed, how should we choose the type (quadrilateral,
triangular, etc.), size and number of panels? and (3) How
should we distribute the singularities for given panels;
constant, linear, parabolic, or higher order polynomials? I
would like to emphasize that the above problems should not be
treated by a numerical trial-and-error basis, if avoidable,
but rather by some clever mathematical analysis.

One feature of these polynomial representations is that they can
be differentiated term-by-term with simple algorithms. Thus the
dipole, and derivatives of both singularities, can be evaluated
from the same set of polynomial coefficients which are presented
here. The only concern to keep in mind is that some accuracy
will be lost, typically on the order of one decimal per
differentiation. This is one reason why six decimals are
retained in the source potential.

I would like to offer a corollary to Prof. Tuck's "axiom" that
the computational effort spent on the influence coefficient
evaluation and the matrix inversion should be comparable.
Assuming a direct solution of the equation system, we should
aim to spend O(N) operations on the former - with the kind of
work described here, influence coefficients can be computed in
much less than O(N) flops (where, say, N = 0(103 - 104)). So
indeed, we should put more of our effort into the problem of
solving the equation system.

I certainly agree. In the past we have been concerned primarily
about the time required to evaluate the influence coefficients,
but with fast algorithms now available, and the practical need to
increase the number of panels, the matrix solver will be the
limiting factor. Iterative solutions are the obvious approach to
follow, if they can be successfully adapted to free surface
problems.




