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ABSTRACT

The calculation of second-order loads and
motions for floating bodies in reqular waves has been
a topic of intense investigation in the recent past.
The main difficulty one is confronted with in this
problem stems from the non-homogeneous free-surface
condition that arises in the second-order diffraction
problem. As a result the classical methods that have
been used to solve for the first-order problem may not
be straightforwardly employed, and some controversies
have been going on the correctness of the results that
have been published so far.

The work that is reported here is a continuation
of previous work carried out at IFP on the subject.
In a previous paper /1/, an original method, based on
Haskind's theorem, was introduced to simply calculate
the second-order horizontal loads upon a fixed body.
In another paper /2/, the problem of describing the
body motion to second-order, and deriving the
resulting hydrostatics, was considered. Applications
were then only focused on the calculation of drift
forces in heave and pitch.
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Since then some new developments have taken
place, and a complete numerical model has been built
up that permits to derive to second order the loads
and motions for vertical axisymmetric bodies in
regular waves. Some features of the underlying theory
and some results are described below.

A preliminary step is to develop Newton's
equations to second-order, and to formulate the
associated hydrodynamic problem. The first-order flow
can be derived using standard numerical methods (that
is solving one diffraction and six radiation problems,
calculating the body response, and constructing the
total first-order potential in the fluid domain).
Similarly it 1is shown that the second-order flow (at
the double frequency) can be split up into an incident
component, a diffraction component (that takes account

of the first-order motion), and six elementary
radiation components. Only the diffraction component
obeys a non-homogeneous free-surface equation. The

radiation ones are identical with those of the linear
potential theory, but take place at the double
frequency.

The second-order diffraction loads are obtained
in a manner similar to the one presented in /1/. That
is, combining the second-order diffraction problem
with the elementary radiation potentials at the double
frequency, each component of the loads due to the
second-order diffraction potential is expressed as a
sum of integrals over the body surface and over the
free-surface at rest. The theoretical and numerical
convergence of the free-surface integral has been
carefully investigated. This required to gain some
insight of the asymptotic behavior of the second-order
diffraction potential far away from the body.

Behavior of the second-order diffraction potential at
large radial distances.

It has been shown here that it consists of two
components. The first one ensures that the
free-surface equation be fulfilled to second order,
and describes waves that are "locked" to the
first-order wave system. The second one consists of
waves that obey the homogeneous free-surface equation,
and- therefore travel independently of the first-order
wave system. They asymptotically behave as radially
diverging waves with wave number related to the double
frequency and the waterdepth through the classical




dispersion equation.

The analytical expression  of the locked
component may be simply obtained by considering that
the first-order diffracted and radiated waves can be
asymptotically described as plane progressive waves,
traveling in the radial direction. Thus at some point
(R cos 8, R sin 8) far away from the body the
first-order wave system can be regarded as the
superposition of two sets of plane progressive waves,
at the same frequency but traveling in different
directions: the 1incident waves with wave number
vector kI (-k, 0), and the diffracted/radiated waves
with wave number vector k8 (k cos 6, k sin 6) and
amplitude = O(R-1/2). It is a known result that in
such a case the associated second-order wave system
consists of three sets of waves, at wave number
vectors 2 kI, 2 k8, and kI + k. The first ones are
the incident second-order waves, the second ones are
of order O(R-1), and thus of reduced interest, but the
third ones are of the order O(R-1/2). An interesting
feature 1is that they travel (locally) in the median
direction and therefore do not propagate radially.

It has appeared that the existence of these
second-order locked waves causes the free-surface
integral to be a highly oscillatory function of the
upper radial bound to which it is computed, but to
eventually converge toward the desired value (in the
numerical applications some tricks are to be employed
to filter out these oscillations and to speed up
convergence).

Numerical results.

They have been first obtained for the classical
case of a circular cylinder standing on the sea-floor.
Analytical expressions have been derived for the
different components of the second-order horizontal
force, except for the free-surface integral which
requires a final numerical evaluation. An interesting
feature that has been obtained is that the free
surface integral, at a given wave number, does not
reach an asymptotic value when the waterdepth exceeds
half a wavelength of the incoming wave system. This
peculiarity is to be linked to a standing wave effect
that+- takes place on the weather side of the cylinder
and that induces second-order pressures slowly
decreasing with the  submergence. That such a
phenomenon was to take place could easily be foreseen
from the previous analysis on the second-order locked
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waves.

Next a diffraction/radiation code developed at
IFP was extended in order to derive the second-order
loads and responses for three-dimensional bodies in
regular waves. This code assumes vertical
axisymmetry, which allows to develop the velocity
potentials as Fourier series of the polar angle 8, and
to reduce the three-dimensional problem to a suite of
two-dimensional ones in the plane (R,z). In this code
the fluid domain is divided into two zones: a zone
close to the body where the solution is constructed
through fluid finite elements, and an infinite
external domain where elementary analytical
expressions are used.

The obtained numerical results were first
checked against the case of the circular cylinder and
a good agreement was obtained. Applications were then
made to the case of a buoy, for which experimental
results were obtained at ENSM wave tank. A good
agreement was observed between numerical and
experimental values for the second-order heave force
(the buoy being held fixed in waves). Radiation tests
in heave were also carried out but the agreement in
this second case appeared to be less good. Viscous
effects could be inferred, but also theoretical and
numerical problems related to the evaluation of the
body surface integral, at the hull edges. Further
investigation is required on this point.
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Discussion

Papanikolaou: In the second-order free oscillation problem, you define a

Molin:

Kleinman:

Molin:

Mei:

P.F. Wang:

Molin:

Kim:

second-order diffraction potential which seems to contain
radiation effects. I miss the interaction of the radiation
effects with themselves. You could have a more clear
formulation for the velocity potential. How are the
second-order forced motion effects taken into account?

I do not consider the free-oscillation problem, but directly
the body response to an incoming wave system. In this case, it
appears more convenient to gather all the inhomogenous terms
together (due to first-order diffraction and radiation), and
solve only one second-order problem. There are other ways to
proceed, but they require solving more than one second-order
problem.

I did not see how the solution depended on the inhomogeneity
in the free surface condition. Also what radiation condition
did you assume and how does the solution behave in the far
field?

I agree that my derivation of the asymptotic behavior of the
second-order diffraction potential may not be mathematically
correct. Rather, I rely on physical and intuitive arguments.

The radiation condition is usually stated that we must have
outgoing waves or as a differential equation. These are local
statements. But we can formulate an integral form via Green's
theorem (see e.g. Mei 1983 Applied Dynamics Ocean Surface
Waves Eq. 6.3, p. 319) and demand that this integral vanishes
at infinity. I think it can be proven that this condition

is satisfied by this formulation.

I wonder what the radiation condition will be if we have two
incident waves propagating in the same direction but at
different frequencies. Then the second-order waves may
propagate in the same or the opposite direction.

The same procedure as I used here can be applied to the case
of a bichromatic wave system, it just makes the derivations
somewhat more difficult.

I agree with Mei on the point that vanishing of the integral
at infinity is sufficient as a radiation condition when using
Molin's approach even though it is much weaker than the direct
form. Specifying the radiation condition of a second-order
potential without proof leads to erroneous results if we try
to solve the boundary value problem directly. Even the
condition of outgoing waves is not obvious especially for the
case of bichromatic waves.




