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Sloshing frequencies in a rectangular tank with a baffle
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A horizontal rectangular tank is partly filled with water. The natural
frequencies of oscillation of the water are easily determined omn the basis
of the linearised theory of water waves by separation of variables. It is
wished to decrease the dominant 'sloshing' frequency so as to avoid undesirable
oscillations due to external forcing at that frequency. This may be
achieved by inserting a plane rigid thin vertical baffle, completely spanning
the tank parallel to one pair of sides, but extending over only part of the
depth. The effects of introducing the baffle are similar to the changes

in frequency that result from the appearance of a slit in a vibrating
membrane.

The aim of the present work is to estimate the new natural frequencies
as a function of the geometry of the tank, the depth of water, and the extent
of the baffle. Two basic geometries will be considered, a surface-piercing
baffle lowered from above and a bottom-mounted baffle inserted from below.
The problem will be formulated for the former case only, the changes required
to treat the latter case are trivial.

The motion is assumed to be two-dimensional. Cartesian coordinates
are chosen with y = O the undisturbed free surface. The walls of the
tank are at x = b, -c and the water occupies 0 < y £ h. For the surface
piercing case, the baffle occupies x = 0, 0 <y < a (a<h).

On linear water wave theory we can introduce a velocity potential

z (x,y,t) = Re {8(x,y) é—lwt} . (D
Then @#(x,y) satisfies

V2¢ = 0 0 <y <hj =c <x<b, x$ (2)

K@ + ¢y =0 y =0; -¢c < x < b, x#0 (3)
where K = wz/g

¢y— =hy; =c <x<b (4)

¢x =0 =0;0<yc<a (5)

¢x =0 x=b, —c; 0<y<h (6)

This is an eigenvalue problem for the frequency parameter K.

Solutions may be posed in the form
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where

wn(y) = N;I coskn(h—y) n=20,1,2,... 9)

are orthogonal eigenfunctions in [0,h] with N_ a normalising factor. Here
kn (n=1,2,...) are the real positive roots of

K+ k, tank h =0 (10)

while k, = ik (k>0) is one of the two imaginary roots of (10). "The U_ are
are the Fourier coefficients in the expansion of the horizontal velociﬁy U(y)
across x = 0, 0 £y £ h, so that

u@y) = ) U, »m, U = J Uy, (y)dy (11)
n=0 L

where L 1is the interval [a,h] and U(y) =0, 0 < y < a. The forms (7)
and (8), with U, given by (11), satisfy equations (2)-(6) and ensure
continuity of horizontal velocity across L. Continuity of the potential
across L gives, after some manipulations, the integral equation

IL u(t) Ky(y,t) de = g (y), yeL (12)
for u(y) = AUO-IU(Y) (13)
where sin:?;!ifnkc = A= JLu(y)wo(y) dy = <u,py> (14)
Here K, (y,t) = nzl s ¥, (V) v (t) (15)
and s = kk ' (coth kb + coth k c) . : (16)

The forms (12) and (l4) suggest a variational form for A and it follows
that

A= <u"po>2 / czo (<u,ll)n>28n) . (17)
n=1

From this it may be shown that A 1is stationary with respect to first-order
variations of u(y) about the exact solution of (12) and the resulting

approximation is never greater than the true value of A. We now assume a
form

M
u(y) = fup (3 (18)
m=Q
substitute into (17) and apply the conditions for stationarity ,
3A/3u, = 0 (i = 0,1,2,...M) (see, for example, Mei and Black [1]). The
determinant condition for non-trivial solutions for the u; gives an
eigenvalue relation which may be solved numerically.
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An apProximate eigenvalue relation for an arbitrarily shaped baffle
may be derived on the assumption of 'wide-spacing' (see Martin [2]. The
general result is

12ikd | -ikb _ o

( 2e1kb)(e-1kc - R elkc) (19)

1

Vhe¥e R1 (R,) is the reflection coefficient for waves incident from
infinity upon the baffle from the left (right) and T is the transmission

. coefficient, known to be independent of the direction of the incident

wave. The total width of the tank is denoted by d(=b+c).

) For a thin vertical barrier occupying any part, or parts,of the
line x = 0, it is known that Ry = R, =R and R + T = 1 enabling (19) to
be reduced to

sinkb sinkc /sinkd = (1-R)/2iR. (20)

For surface-piercing and bottom-mounted barriers in deep water simple
expressions for R are given by Ursell [3].

Results are given for the full linear theory and the approximate
relation (20) applied in deep water. All results are given in terms of
k rather than K as for a tank without baffle the natural modes of
oscillation occur for kd = nm , n an integer. In Fig. 1, results are
given for a surface-piercing barrier at the centre of the tank. The
symmetric modes are unaffected by the barrier as the horizontal velocity
is then zero on the centre-line. Agreement between the full theory and
the approximate solution is excellent, the comparison is made for the
lowest mode only as for other modes the results are graphically
indistinguishable. The full theory results are for a finite depth
h/d = 1 and as a/d tends to one kd must go to zero for the lowest mode.
When the barrier does not divide the tank equally, as in Fig 2, more
modes are affected by the presence of the barrier. Results for bottom—
mounted barriers are given in Fig.'s 3 and 4. Here a 1is the submergence
of the end of the barrier. It is apparent that, for the geometries
considered, the barrier must be quite close to the surface before the
natural frequencies are significantly changed.
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Discussion

J.J. van den Bosch from Delft University did experiments on
an anti-rolling tank with a curved bottom, corresponding to
your case with a submerged barrier. These experiments may be
useful for confirming your results.

Regarding practical applications, there is a major problem
with sloshing in tank trucks of which there are many
thousands in the world, and many (perhaps hundreds) of
accidents per year related to sloshing.

You will get more information if the integral equation is
solved by a Galerkin method.

The integral equation/variational formulation and the
Galerkin formulation are equivalent. The Galerkin formulation
readily gives explicit equations to determine the eigen
functions, however the main interest for the linear problem
is in determining the eigen-frequencies.

It is an interesting mathematical derivation relating the
determination of resonant frequencies in a simple rectangular
tank. 1In realistic marine applications, such a resonant wave
phenomenon is well recognized and studied in two aspects,
i.e., the anti-rolling tank and the liquid sloshing problem.
In the former case, the resonant water motion in the
anti-rolling tank is utilized to reduce the peak roll
response of a ship. For tanks of more complicated
geometries, approximate formulas have been derived in our
work (for example, see X.J. Wu et al. J. Shanghai Jiao Tong
Univ., No. 2, 1983 and X.J. Wu and W. G. Price, Int. Conf.
Vibration Problems, Xi'an, June 1986). The latter is of
special significance to the sea transportation of oil, LNG,
etc. Tanks should be specially designed to avoid resonant
sloshing motion of liquid. A more sophisticated numerical
procedure has been developed by Mikelis et al at Lloyd's
Register of Shipping (Ref. Mikelis et al, read at the Autumn
Meeting, Soc. Naval Arch., Japan, Nov. 1985) for predicting
sloshing motion in arbitrarily shaped tanks with internal
structures. I am particularly interested in their conclusion
that "viscosity does not affect the liquid's sloshing
response and therefore simplification is possible."




