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Null-field methods for floating cylinders whose cross-sections are elongated

by
P.A. Martin

Department of Mathematics, University of Manchester,
Manchester M13 9PL, England.

Consider a rigid cylinder which is floating horizonfn”y in the free
surface of deep water. We shall consider the radiation problem in which the
cylinder is forced to oscillate in calm water. We suppose that the oscillations
are small and time-harmonic (with frequency w), and make the usual assumptions
of classical hydrodynamics. This leads to a familiar linear boundary-value
problem for a velocity potential ¢. This problem can be treated using many
different methods. Here, we shall use the null-field method (Martin 1981, 1984).
Specifically, we obtain a new family of null-field methods which are useful for
cylinders with elongated cross-sections.

Before describing this work, we begin with a brief description of the standard
null-field method. This comnsists of solving, numerically, an infinite set of moment-
like equations for ¢ on the cylinder:

f ¢-g~t;¢mds=vm m=1,2, ... . . (*)
aD

Here, 3D is the wetted surface of the cylinder, 3/3n denotes normal differentiation,
Vp are given numbers, defined by

Vp = IBD Vonds,

V is the prescribed normal velocity on 3D, and &, are Ursell's multipole potentials:
let 0 be the origin of Cartesian coordinates (x,y) so that y = 0 corresponds to the
mean free surface and y increases with depth; choose 0 inside the cylinder; ¢2(P)

is the potential at P due to a wave source at 0, &; is that due to a horizontal

wave dipole, and ¢y (m > 2) are wavefree potentials, e.g.

Synsy = cos2nf . K cos(2n-1)8 n=1 2
n+ = s s g oo ey
rln 2n-1 r2n-1

where K = 42/g and (r,9) are circular polar coordinates at 0, defined by x = rsing

"and y = rcosg.

. Theoretically, the null-field method is very attractive: unlike simple
integral-equation methods (e.g. Frank's 'close-fit' method), the null-field
method does not suffer from irregular frequencies. However, simple schemes
for solving (*), numerically, are not always successful. Thus, Martin (1981)
considered the forced heaving of an elliptical cylinder, but his numerical
scheme, using a global basis to represent ¢ on 23D, did not converge for
very thin ellipses. Similiar experiences were reported recently by Takagi




et al., (1983), who used different cylinders and a local basis, i.e. they
partitioned 9D 1into elements and assumed that ¢ was constant over each
element. We have used the same local basis for the heaving elliptical
cylinder. We found-that, numerically, the global bases performed better,

i.e. at any given frequency, we could achieve convergence for thinner
ellipses. :

To obtain a convergent scheme for cylinders with elongated cross-
sections, we propose to use a new null-field method, which is obtained by
using a different set of multiple potentials: we use &3, ¢2 and an infinite
set of elliptical wavefree potentials, 3;, defined by, e.g.

$3n+2 = 2n¢, + YKe(dp2p-1 = $2n+1)s n =1, 2, ...

where mé, = e MEcos mn, (§£,n) are elliptic coordinates, defined by x = ¢
sinhg sinn, y = ¢ coshf cosn and c¢ 1s a parameter at our disposal (the
foci are at x =0, y = +c); we obtain a family of null-field methods by
varying c¢; we could also_put the foci at x = +c, y = 0. This set of
multipoles was first used by Ursell (1949) for ;olling elliptical cylinders;
we can prove that it is complete.

Simple numerical schemes for implementing the standard null-field method,
(*), are very efficient for cylinders which are 'nearly' circular about O.
We therefore expect that similar schemes for the new methods will be efficient
for cylinders that are 'nearly' elliptical. Numerical examples will be given.
We note that this approach has also been successfully used for analogous
problems in acoustics by Bates and Wall (1977) and, more recently, by Hackman
and Todoroff (1985).
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Discussion

In acoustics if you go to the analog of wave-free potentials
in elliptic or spheroidal coordinates you get Mathieu or
spheroidal functions, which are difficult to compute, but
here you get remarkably simple functions no more complicated
than in the circular or spherical case.

Also in acoustics if you use the regular wave potentials you
appear to get better convergence than with the outgoing
solutions and it would be interesting to try the calculation
with regular waves to see if a similar phenomenon occurs.

I have not yet used regular potentials to represent ¢on 2D,
but it seems worth trying.

Perhaps the regular functions are better for slender bodies
because r is good near the ends whereas r T is good in the
middle.

You are solving a problem which we have known how to solve
for more than twenty years with methods which always work.
Now you are proposing a method which does not always work;
what are we trying to gain here?

Sometimes the method converges faster than Frank's method.
For multi-body problems the method may prove to be more
efficient,

Is it true that the null-field equation method may be more
economical in the evaluation of far-field quantities like
damping coefficients or the wave field relative to the
conventional boundary-integral method? Is this perhaps the
reason why it is so popular in acoustics?

Certainly far-field quantities can be efficiently derived.
Does this calculation cover all frequencies?

I have made calculations for a broad range of frequencies,
with similar results.

Similar ideas but different procedures called interior
integral-equation methods for 2D, 3D, and multi-hulled
structures have been developed in my previous work ("The
interior integral-equation method: I two-dimensional bodies;
II three-dimensional bodies; IV multi-hulled bodies", to be
submitted). It is my pleasure to display some sample
calculations including a 2D rectangle, a 2D triangle and a 3D
box (40x40x%20 m) which are in very good agreement with the
conventional surface singularity-distribution method
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results. 1In the 2D cases, irregular frequencies are also
observed. However, when using Wu and Price's multiple Green
function formulation, there is no irregular frequency in our
2D interior integral-equation method. Comparison with Brown
et al's experimental data for a 3D barge, 2.4x0.8x0.105 m, is
excellent.

Therefore, when reading about Martin's null-field method
(JFM, 1981) I was surprised at the non-convergent problem
arising in his approach since there may be no such serious
trouble for other existing techniques. Supposing that his
derivation is correct, the trouble might be caused by the
basic formulations he adopted. That is, the combination of
equations

fe@ % 6, Qds - [v.@écr,@ds 7
and
G(P_,Q) = Z_lxm(P..) ém(a)) for v, <1, (2)

After preliminary study, it has been found that the solution
of equation (1) may not be convergent or may not be
convergent at the correct value ("On the limitation of the
null-field integral-equation method", to be submitted) except
that rational treatments are introduced. This conclusion is
identical with Martin's sample calculations and Takaygi et
al's investigation (1983).

The defect of the singularity-distribution method is the
irregular frequency problem. However, in 2D mono, twin or
multi-hulled bodies irregular frequencies may be removed by
applying Wu and Price's formulation (to be discussed in this
Workshop) .

The advantage of Martin's null-field method may be the
removal of irregular frequencies (although there is no
numerical evidence presented), but it brings serious
divergent problems. It is well known that when we cannot
determine whether or not a proposed theoretical method
produces convergent solution, such a technique may be of no
practical use. However, I expect that Dr. Martin will
improve his method to overcome this defect.

The infinite system of null-field equations

can be properly derived by combining the interior integral
equation (Wu's Eq. (1)) and the bilinear expansion of G (Wu's
Eq. 2)); it can also be derived by simply applying Green's
theorem in the fluid domain to ¢ and im, for m = 1,2...

The system of null-field equations and the interior integral
equation are equivalent; both are uniquely solvable at all
frequencies. To obtain this equivalence it is necessary to
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satisfy (1) at all points P inside D; satisfying (1) at
only a discrete set of points can lead to irregular
frequencies (for the corresponding equation in acoustics, see
Martin, QJAMAM 33 (1980) 385-396, and references therein).

If T understand Mr. Wu's discussion correctly, he has solved
the interior integral equation (1), numerically, for various
geometries, and found irregular frequencies. He does not say
how he solved (1), but I suspect that there is no conflict
with my results. I look forward to reading his four papers
on this topic.

Referring to Tuck's comments on the applicability of Frank's
method to cylinders without vertical entrance at the
waterline, in my experience it fails when the flare angle
deviates substantially from 90 degrees. We could use the
Helmholtz integral-equation method instead of Frank's method.

Frank's method can be made to work for a non-vertical
intersection at the free surface by careful use of the solid
angle concept rather than use of the usual smooth contour
assumptions in the integral-equation formulation.

We have seen a related problem of poor convergence in the
context of calculating (free) nonlinear surface waves using a
spectral method based on circular harmonic basis functions.
Assuming spatial periodicity, the undisturbed free surface
can be mapped into a circle. As the instantaneous free
surface deviates from this circle, a spectral technique using
a Taylor series about the origin results in numerical (and
possibly theoretical) difficulties. Your work may throw some
light on what we are doing.

I am a bit confused about whether or not irregular
frequencies are present. Wu showed results with irregular
frequencies using the null-field method. I assume there was
an error in implementation. I vaguely recall your paper
proved that irregular frequencies are absent.

Irregular frequencies do not occur for this method.
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