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Within the Hydromechanic's Research Group at Newcastle University, Higher

Order Methods of Hydrodynamic Analysis are being investigated on two
fronts.

Under numerical hydrodynamics a Higher Order Boundary Element (HOBE)
method has been developed, implemented and tested for arbitrary 2D
sections (floating or submerged) with free surface effects included. In
developing the theory of higher order boundary elements both the radiation
and diffraction problems have been investigated. Within the analysis
program developed linear or curved elements may be used and on these
elements the unknown dependent function can be represented by constant or
higher orders of approximation (up to cubic used). Assessment of the
technique has been carried out through comparisons with the conventional
Frank close-fit approach in terms of cpu time required to formulate and
solve the problems and the accuracy of the modelling. The Frank close-
fit approach can be implemented wusing either the simple mid-point
integrand evaluation approximation of integration over the facet or the
more exact analytic integration. We have implemented both since the
former method is usually satisfactory from a practical engineering point
of view and the latter approach is nearer in complexity to the details of
the HOBE method. The difference between the analytic integration approach
and the implemented HOBE method provides some measure of the overheads
associated with the new technique. One must also note that the
reciprocity properties of the Green function cannot be exploited in the
HOBE method. Our applications have confirmed that both accurate modelling
and fewer higher order boundary elements are required to model the stated
fluid-structure interactions. However, the full potential of the method
can only be attained if significant time improvements can be made in the
cpu time spent in formulating the stated interaction problems. Much of
this additional demand for computer resources arises because of the
management associated with free selection of N, the number of elements, n
the order of approximation for the element geometry, m the order of

approximation for the behaviour of the unknown on the element together
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with the significant amount of increased integration of the Green function
and associated boundary condition values for the problems being
investigated. Thus improved formulation times of the HOBE method will
require additional work on identification of robust decision making rules
to permit the computer code to automatically select "optimum"™ quadrature

rules.

Within the theory the usual Fredholm Integral Equations have been reduced
to equivalent algebraic problems and so formulation is essentially
concerned with evaluation of the coefficients of the complex simultaneous

sets of equations:
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The coefficients of the matrices A,B, C and D are derived from terms of
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The functions f(t) and g(t) represent the coordinates & and n of an

element using the Lagrangian polynomial forms:

g ;=§ £(qy) N, (t) = f(t)
and
n
n ;=§ n(q;) N () = g(t).

Ni(t) are the usual shape functions of order (n-1). The functions Mk(t),

identical to Ni(t), are used to represent the unknown velocity potential
on the element in the form:

m
) =§ 2(q,) Mk(t),
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that is, a function of order (m-1).

When using a constant approximation for the unknown on an element the mid-
point of the element is used to locate this value, whereas for higher
orders of approximation a continuous solution arises since there is always
a common unknown value at the meeting point of neighbouring elements. As
a result of moving the singularities to the ends of the element in the
higher order representations of ¢ a number of interesting problems
concerned with the singular nature of the associated Green function have
arisen. These singularities are generally associated with the Rankine
source part of the general Kelvin source used to model the free surface
effects through the function G. For p;, 2 submerged point, boundedness of
the integrations indicated above has been established for the various
orders of approximation, n, used to represent the element geometry. Use
of Lean and Wexler transformations also permits use of the Stroud and
Secrest quadrature rule when evaluating the elements of the matrices C and
D. For integrals free of any form of singularity Gauss-Legendre
quadrature has been selected. Specification of the so0lid angle, «a,
nominally set to -7 in most 2D formulations, can significantly influence
the solution near the free surface. We also find that the direct method of
solution for the velocity potential is more readily implemented than the

indirect or source strength approach.
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The second front relates to calculation of the second order fluid damping
coefficient by our Added Resistance Gradient Method. This is primarily
concerned with evaluation of the gradients of the mean second order speed
dependent forces with respect to the forward velocity as this velocity
tends to zero. The theory is based upon the concept of low frequency wave
damping outlined in Johan Wichers OTC papers of 1979, 1982 and 1984. This
phénomenon is investigated using a geperalised strip theory based method
which was tested through comparisons between our theoretical predictions
of the low frequency wave damping and NSMB's experimental measurements for
a 220,000 dwt tanker. Because head sea diffraction is of interest
Skjordal's generalisation of Maruo and Sasaki's head sea diffraction has
been used to provide the wave excitation forces. In theory application of
this analysis should provide a number of problems when looking at the
Added Resistance Gradient as the forward speed tends to zero. However,
once again the robustness of the ship theory unwittingly provides
reasonable estimates of the sought second order wave damping coefficient.
We would like to discuss some unresolved problems and our extension to a
3D analysis in the light of those problems concerning direct evaluation of

source strength by means of the HOBE technique.
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Discussion

I was pleased to hear your opening premise, that is, that we
are interested in solving problems with large numbers of
panels. Therefore, of course we wish to put our effort into
the N3 portion of the problem. What do you see as a practical
value for a "large number of panels"?

I have used 300 panels on a quarter body. For multi-bodies
more panels are required.

Have you compared computing times for conventional 3D and
higher order panel 3D methods? I have tested linear and
quadratic distributions over panels. The higher order panel
method was first developed in aerodynamics. 1In that case, the
Green's function is very simple, i.e., 1n R in 2D cases or 1l/r
in 3D cases, such a technique is applicable. We, however,
require more complicated Green's function evaluations and
these can take much more computing time for evaluations using
this method. Therefore, in 2D or 3D cases with a small number
of panels, no savings in computer time can be expected.
Obviously, as shown by Hearn and also by my own work, there is
no improvement of the accuracy. In particular, when a
structure has large curvature or more joints as frequently
seen in the offshore industry, perhaps no substantial
reduction of total panel number can be achieved. When a more
complicated numerical technique can not gain either more
accuracy or computing time saving (or both), its applicability
may be doubtful. Nevertheless, in rigid body problems, the
potential or source distribution over the structure midbody
length varies slowly. Therefore, a suitable high order panel
method in our field may be to apply linear, quadratic or cubic
distribution over a large longitudinal strip, thus both
numerical accuracy and savings in computer time can be
achieved. This has been done in my work and given in my
publication.

I have had some experience with higher-order panels in three
dimensions. 1In my case, the geometry was represented exactly
in the terms of orthogonal- curvilinear coordinates, however
Chebyshev polynomials of varying orders were used to
approximate the velocity potential. I found that piecewise
linear variation of the unknown performed worse than
piecewise-constant panels while piecewise-quadratic panels
performed substantially better. This appears to confirm your
experience in two dimensions.

Piecewise-linear panels would seem to be less accurate than
piecewise-constant panels.
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