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The usefulness of mixed Eulerian-Lagrangian solution schemes as
applied to the study of water waves was clearly demonstrated by Longuet-
Higgins and Cokelet (1976). The algorithm requires two steps: first,
Laplace's equation is solved in a fixed frame of reference, and then
Lagrangian points are followed to update the position of the free
surface and the potential on the free surface. This method was
generalized by Vinje and Brevig (1981) for the case when two-dimensional
bodies were present in the fluid. But the intersection of the body with
the free surface was not properly treated by Vinje and Brevig. However,

Lin (1984) developed a consistent theory for treating the intersection
problem.

As an example of the method's application, we consider a piston
wavemaker which is forced to surge sinusoidally. In the mixed Eulerian-
Lagrangian approach, we first find the solution to Laplace's equation
which satisfies Neumann boundary conditions on the wavemaker and
Dirichlet boundary conditions on the free surface. Cauchy's integral
theorem can be used to solve the field equation. The method of images
is used to eliminate the boundaries on the bottom and end of the tank,
and Fredholm integral equations of the second kind are obtained for the
unknown potential and stream functions on the wavemaker and free surface
respectively. Upon solving the equations, the nonlinear boundary
conditions on the free surface are used to proceed to the next time
step. The solution to Laplace's equation and the time-stepping
procedure are by necessity approximations. Nevertheless, the numerical
scheme must be accurate and stable.

A point collocation method is used to find the approximate solution
to the integral equations, and Adams-Bashforth's predictor-corrector
method with a Runge-Kutta starter is used to integrate the boundary
conditions on the free surface. In general, forty panels per wavelength
and forty time steps per wave period are found to give acceptable
accuracy. But in addition to accuracy the stability of the time
integrator must also be considered. In fact, sawtooth instabilities
have been observed by Longuet-Higgins and Cokelet, and others. Since
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the instability is not lTimited to steep waves, it would seem that the
Tinearized equations can give some insight into the nature of the
instability.

If a matrix technique is used to find the stability criteria, it can
be shown that the time integrator is stable if the transfer function's
maximum eigenvalue does not exceed one. The condition for stability
prescribes a relationship between the time step and the grid size. For
example, for the four-order Runge-Kutta scheme the maximum time step is
proportional to the square root of the smallest panel size. 1In the
mixed Eulerian-Lagrangian solution method, the Lagrangian points tend to
concentrate in regions of large gradients. Although the increase in
accuracy near the cusp of a wave is desirable, this same feature, we
believe, also causes the scheme to be inherently instable. Typically,
smoothing is used to remove the high frequency noise that is
characteristic of the instability. But the tendency to become instable
can only be eliminated if the grid size is not allowed to become too
small. So every few time steps we find the length of the free surface
and divide it into equal segments. Then we interpolate the value of the
potential at each of the new grid points and restart the time
integration.

Regriding is not new to fluid mechanics. For instance, the
regriding scheme of Fink and Soh (1974) extended the range of vortex
sheet problems that are possible to do. Yet, despite the successful
application of regriding to vortex problems, regriding is not without
its disadvantages. For example, grid points will not concentrate near
the cusp of a wave where greater accuracy might be required. But the
disadvantages are offset by the advantages of regriding:

1. Numerical instabilities arise when regriding is not used
because smoothing does not reduce the tendency of mixed
Eulerian-Lagrangian solution schemes to become unstable.

2. Regriding can be used to match nonlinear inner and linear
outer solutions which are solved using Lagrangian and Eulerian
points respectively.

3. Errors caused by regriding decrease as grid size decreases;
a smoothing filter always smoothes.

4, Smoothing filters cannot be applied at the intersections of
the free surface with the wavemaker.

Furthermore, we believe that regriding would not be required if
Eulerian points are followed on the free surface because they do not
concentrate like Lagrangian points do. For example, the diffraction gf
an incident wave about a vertical circular cylinder can be solved using
Eulerian points. But Lagrangian points can solve a larger class of




problems. In particular, the wavemaker problem is best solved using
Lagrangian points. As a result, numerical solutions to the wavemaker
problem are used to compare the effects of regriding to smoothing.

The wavemaker is forced to surge sinusoidally for a range of stroke
amplitudes. In each case, the effects of regriding are compared to
those of smoothing. Specifically, the power expended by the wavemaker
should be equal to the rate at which energy is building up in the fluid.
For most of the numerical simulations, the power input by the wavemaker
relative to that in the fluid is in error by less than four percent in
amplitude and five degrees in phase. Moreover, the errors caused by
applying regriding and smoothing are comparable for moderately steep
waves, but as the wave steepened the errors caused by smoothing became
unacceptable. In fact, in one case the smoothing filter was not able
to suppress a sawtooth instability and the numerical scheme broke down.

As further evidence of the robustness of regriding, a numerical
simulation is compared to the experiments of Chan and Melville (1985).
Chan and Melville generated a plunging breaker by varying the frequency
content of the wavemaker. Wave probes measured the wave's amplitude,
and lasers measured water-particle velocities. The agreement between
experiment and theory is satisfactory in the breaking zone.

The numerical experiments substantiate the theory that regriding
inhibits the tendency of mixed Eulerian-Lagrangian schemes to become
unstable. Whereas smoothing treats the symptoms of instability and not
the cause.
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Discussion

Did you compare the experiments with a linear or non-linear
theory?

A linear solution using a spectral method was used to
estimate the effect (reflection) of the far wall of the
wavemaker for the nonlinear solutions. All the
comparisons with experiments we show are for the
nonlinear theory.

(1) Did you compare your theory with the second-order forces
on a heaving cylinder in the frequency domain?

(2) When imposing boundary conditions on the body and

free surface, you said the body boundary conditions are more
important. 1 did calculations in the frequency domain where I
omitted one or both, depending on the mode and shape. I found
that neither one can be omitted; one is as important as the
other,

We compared the circular cylinder results with a linear
second-order spectral solution and the agreement was fair.
Molin would agree that this is due to the difficulty in
integrating the Bernoulli term in the pressure around the
sharp corner at the cylinder's base. However, we found
excellent agreement for the cone with frequency-domain
results.

I was asking about second-order forces on a heaving cylinder
after it reaches steady state.

We computed higher-order forces by taking a period of the
nonlinear time-domain solution after steady state is reached
and then applying a Fourier analysis. The agreement was fair
for the cylinder, but within a few percent accuracy for the
cone.

Could you describe how the numerical simulation of the
wave-tank experiments was accomplished?

We were given the time history of the displacement of the
wavemaker from the experiment and simply used the same time
history to do the numerical calculation.




