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TRAPPED WAVE AND NON-LINEAR RESONANCE IN A SEMI-SUBMERSIBLE

1. INTRODUCTION

In this work some properties of trapped waves over
submerged cylinders are reviewed and, for bodies not too close to the
free surface, an analyticall asymptotic expression for the lowest mode
is‘derived. The excitation of these modes ahd the ensuing non-linear
resonance is- also analysed and the response can be analytically
determined with help of the asymptotic expression for the lowest mode.
In this way it is shown here that the excitation of trapped waves can
be of importance in the analysis of semi-submersib1e'p}ataforms.

2. EXISTENCE AND SOME PROFERTIES OF TRAPPED WAVES

In this work we will assume that the cross section of
the slender body is in the plane (y,z), where z is the vertical axis
pecinting upwards.

A trapped wave is a solution of the form:

i(KTXth)

T(x,y,2) = T(y,z) . e (2-1)

that decays exponentially with y.

. For this last condition it is necessary that KT>K0=92/g,
where we used the deep water dispersion relation.




14

f (2) = (ZKO)I/Z. e

In fact, T(y,z) ~ e'A°|yl.f°(z) when |y| >« where

K,z

0

(2-2)

A= (K

1,2
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The difficulty of the associated eingenvalue problem is
the infinite size of the fluid region. Working with the formu]ation
of~the'Hybk1d Element Method this problem is transformed to a standard
eigenvalue problem in a finite domain and we can easily show then that:

i) For an arbitrary submerged body- and any frequency there
exists at least one trapped wave {KT(Q); To(y,z;Q)}.,

. Ke(@)
ii) -
K (%)

-+ 1 when -0 or Q->w

-If 3B is the contour line of the cross section and B it§
width we define the integral '

!

' 2Kz ,
I(K; 3B) = - 2K? . J e . n, . doB ' - (2-3)
: 0 0 5B .
In the limits Q=+0; Q >, AO(Q) is the root of the
equation ' '
B . xoz(sz) + 22 (%) - I(Ko; 3B) = 0 (2-4)

~

b4

where I(K 3 8B) » 0 if Q-0 or Q-+, In these limits also A, (2)+0 and
0




-2 |yl '
£ (2) . e °. - (2-5)

.Tu(y;z)

In reality the "approximations" (2-4), (2-5) are -
asymptotically correct when I(KO;SB) + 0. So they are good for all
frequencies if the body is not too close to the free surface — as it

is the case, for instance, of a semi-submersible. We have -used them to
study these structures.

3. EXCITATION AND NON-LINEAR RESPONSE

~

Trapped waves can be excited only by non-linear interaction

of incoming waves. Once excited the response can be determined by
multiple scales. It is given by:

o 273 ' _ 'i(—K—TX-ﬁt)
®(x,ysz,t) = 6 {—A(X,T) . T (y,z) . e- + (*)} + 0(9)
2 0
(3-1)
“where
8§ = (wave amplitude)/B X
l4/3

(X3T) = 8 7 (x3t)

- '!/3 . Q/S
('KT;Q) = (Ky + 8 7 AKys @+ S . AQ)
KT =_KT(Q) = wave number of excited trapped mode.

and A(X,T) is solution of the equation:
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i (=+c.22)+(c.+i.u.).A+ (n+ip. ). |Al%2A = P 3-2
- - v ( ,,)II (3-2)

In the above expression

¢ = — = "group velocity" of trapped wave

o = AQ - g . AKT = detuning

My = viscous damping coefficient

n = non-linear coeffiéient

M = non-linear radiation damping coeff%cient

P = exciting term. ! 1

"The coefficient My has been estimated using traditional
oscillatory boundary layer theory and it is a small factor. The trapped
mode, in fact, leaks energy to infinite at order §*/° and M, is
associated with this. It can be shown that “r/n ﬂrO«AO/KO)") and SO

the radiated energy is very small when A /K <<1 — an usual situation
for a body not too close to the free surface. The coefficients {c;
My sons “r} depend solely on To(y,z), the trapped mode, but P, the

exciting term, depends also on the quadratic interaction of the linear
potentials associated with the incoming waves.

The stationary solution of (3-2) satisfies the algebraic
equation (o +1u,) A +(n+ip) .'|Aol'2Ao = P. This equation is identical
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to the one associated with resonance of a non-linear oscillator. Using
. the asymptotic approximations (2-4), (2-5) and Froude-Krilov
approximation for linear diffraction we can analytically determine the
response for a semi-submersible. It can be shown that the excitation

of trapped waves can be of impértance in this case. A full report of
this work has been submited to the Journal of Fluid Mechanics.
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Discussion

This relates to work done by Jones (1952). The difficulty in
this problem is in extending the theorems of Courant-Hilbert
from a finite domain to an infinite domain. Presumably, you
have done something similar here. Jones showed that for
symmetric bodies there is always at least one trapped wave.

I express the outer solution in terms of eigenfunctions and
then match the inner and outer solution by requiring
continuity in the potential and normal velocity.

You mention the application to semi-submersibles as a
motivation of this study. However, the slow length scale in
the longitudinal direction is much longer than a
semisubmersible. Perhaps this formulation is more appropriate
for a submerged ridge.

Two-dimensional effects are accounted for and the solution is
x-dependent. The solution is not wavelike.




